
Abstract Execution I

Appendix

We provide additional information and explanations that had to be left out of the
paper for space reasons. Numbered (sub-)sections relate to those of the paper.

2 Specifying Abstract Programs

Remark. The specification constructs listed in Table 1 include some syntactic
sugar that is removed before loading a problem into our tool; details about that
are provided in the implementation.

3.1 Principles of JavaDL

To help understanding the JavaDL sequent calculus a little better, we briefly
discuss three exemplary calculus rules. Figure 6 shows the rules allRight, orLeft
and ifElseSplit. The first two are logical first-order rules, whereas the last one is
a (splitting) Symbolic Execution rule. Rule allRight processes a universal quan-
tifier in the succedent of a JavaDL sequent by replacing the quantified variable
by a fresh Skolem constant. Because a sequent Γ ` ∆ is equivalent to the for-
mula

∧
Γ →

∨
∆, the logical rule orLeft splits the proof into two branches for

a disjunction in the antecedent of a sequent. A disjunction in the succedent (or
a conjunction in the antecedent) would be handled by simply adding the con-
stituents as individual formulas to the succedent (antecedent). Finally, ifElseSplit
also splits the proof into two branches. It is a “classical” Symbolic Execution
rule: because the expression simpleExpr (which stands for “simple expression”,
an expression without side effects) might contain symbolic values, we have to
evaluate the then and else branches separately. For each branch, we add as a
new precondition that simpleExpr evaluates to TRUE resp. FALSE.

allRight
Γ ` [x/c](ϕ), ∆
Γ ` ∀x;ϕ,∆

c is a fresh constant of suitable type

orLeft
Γ, ϕ ` ∆ Γ,ψ ` ∆

Γ,ϕ ∨ ψ ` ∆

IfElseSplit
Γ, simpleExpr .= TRUE ` {U}[π p1 ω]ϕ,∆
Γ, simpleExpr .= FALSE ` {U}[π p2 ω]ϕ,∆

Γ ` {U}[π if (simpleExpr) p1 else p2 ω]ϕ,∆

Fig. 6: Some example JavaDL calculus rules

II Dominic Steinhöfel and Reiner Hähnle

3.2 Formalization of Abstract Execution

Proof (Thm. 2). Let P0 be any legal instantiation of P. We create a program
P0
†, which is equivalent to P0, as follows: First, we transform P0 to a program P0′

without irregular termination. We define the program transformation operator
transf which replaces in the input program each occurrence of

– “return expr;” with “returns=true; result=expr; break outer;”,
– “break li;” with “breaksToLbl_i=true; break outer;”

and, for break and continue statements on the top level (not in the scope of a
loop within the input program), each occurrence of

– “break;” with “breaks=true; break outer;”,
– “continue;” with “continues=true; break outer;”.

The program P0′ then is defined as

P0′ =


outer: {

try { transf(P0) }
catch (Throwable t) { exc=t; }

}


The label outer is freshly introduced. The other flags introduced by transf coin-
cide with those in the premise of nonVoidLoopAERule. All boolean variables are
initialized with false, and exc with null. Since the considered Java fragment
is sequential, does not support reflection, and we additionally do not consider
errors (only exceptions), P0′ can only terminate regularly (if it does not termi-
nate, the conclusion of rule nonVoidLoopAERule is trivially valid). Note that the
rule excludes labeled continue statements, which is why we also do not consider
them here. Then, we define P0

† as:

P0
† =



P0′

if (returns) return result;
if (exc != null) throw exc;
if (breaks) break;
if (continues) continue;
if (breaksToLbl_1) break l1;
. . .
if (breaksToLbl_n) break ln;


The program P0

† is equivalent to P0 since, if P0 terminates regularly, the behavior
of P0′ equals that of P0 (the try statement has no effect) and the added if
statements are not entered. If irregular termination occurs, it is captured and
deferred equivalently to the outside. In the following, we consider, without loss
of generality, the instantiation of P in the conclusion with P0

† instead of P0.

Abstract Execution III

Assume that P0 terminates normally. Since we can assume that it respects
the contract of APS P, all the behavior specification formulas like returnsSpec
are equivalent to false, and the if statements in the premise are not entered.
The premise is therefore, in that case, logically equivalent to the one of rule
simpleAERule and the soundness argument similar to Thm. 1, except that the
abstract update and path condition do not range over all locations, but exactly
over the assignable and accessible locations of P0. Again, since P0 respects the
contract of P, we can find a suitable legal instantiation of the premise which
implies the conclusion.

If P0 terminates irregularly, we easily find a suitable legal instantiation of
the premise implying the conclusion for the breaking and continuing cases. For
the returning and exceptional cases, the validity of the premise implies that
the conclusion is valid for every possible returned result and thrown exception,
since the variables result and exc are set to fresh Skolem constants returns0
and exc0. In particular, it is therefore valid for the concretely returned result or
thrown exception. ut

4 Proving the Correctness of Refactoring Techniques

We created a variant of the existing loop invariant rule based on loop scopes
in JavaDL [30,32]. The new rule, depicted in Fig. 7, only applies to formulas
with a special type of post condition, namely those containing the uninterpreted
Post predicate used in AE equivalence proofs. In the part of the post condition
of the “preserved & use case” where in the case that the loop continues (i.e.,
the loop scope index x is FALSE), normally only the invariant has to be shown,
we additionally include the post condition (highlighted in gray), but with the
second component of the Post predicate set to FALSE. This provides us with
the possibility to only assume and show a simple invariant Inv containing, e.g.,
information necessary for showing termination, and to otherwise continue with
abstract relational reasoning, thereby relating runs continuing loop execution
separately from those leaving the loop.

Two other variants (Figures 8 and 9) are useful for situations where one
loop has a bigger amount of iterations than another. The first one implements
a general unrolling pattern as described, e.g., in [16], for harmonizing the iter-
ation structure of two loops. The second variant realizes the unrolling pattern
as displayed in Listings 6 and 7 along the Remove Control Flag example. It is
specialized to loops where the guards consist of two conjuncts and only the first
should trigger a direct break out of the loop. Both rules are parametric in a num-
ber i determining how often the body should be unrolled. Thus, they spare the
harmonization of the loop iteration structure by manual code transformation.

Performance

Figures 10 and 11 visualize proof sizes and needed time for proof completion
for the studied refactorings. Figure 10 also shows the numbers of APSs for all
models. Proof size roughly corresponds to auto mode time; higher numbers of

IV Dominic Steinhöfel and Reiner Hähnle

loopScopeInvariantAE
Γ ` {U}Inv, ∆ (initially valid)
Γ ` {U} {Uhavoc}

(
Inv → [π (preserved & use case)

boolean x = true; �x
if(expr) {

body
x = false;

} x	 ω]
(
(x .= TRUE → ϕ[Post(result,TRUE)]) ∧
(x .= FALSE → (Inv ∧ϕ[Post(result,FALSE)]))

))
, ∆

Γ ` {U}[π while(expr) body ω](ϕ[Post(result,TRUE)]), ∆

Fig. 7: Loop Scope Invariant Rule for Abstract Execution

loopScopeInvariantAEUnrolling
Γ ` {U}Inv, ∆ (initially valid)
Γ ` {U} {Uhavoc}

(
Inv → [π (preserved & use case)

boolean x = true; �x
if(expr) {

{ (if(expr) body else break;)i }
x = false;

} x	 ω]
(
(x .= TRUE → ϕ[Post(result,TRUE)]) ∧
(x .= FALSE → (Inv ∧ ϕ[Post(result,FALSE)]))

))
, ∆

Γ ` {U}[π while(expr) body ω](ϕ[Post(result,TRUE)]), ∆
i ≥ 1

Fig. 8: “Unrolling” Loop Scope Invariant Rule for Abstract Execution

APSs usually lead to bigger proofs, although due to the influence of other factors
(unrelated proof tree branching, loops etc.), there is no direct correspondence.

Source Code Samples

The source code of most refactoring models is shown in Figs. 12 to 17. For space
reasons, we usually omit showing the JML specifications of the APSs.

Additional Implementation Remarks

In the KeY system, rules can either be programmed in Java as “built-in rules”, or
added as so-called taclets, schematic, theory-specific rules written in a domain-
specific language for SE rules [1, Chapter 4]. Our AE rules are written as taclets,
because this helps to modularize soundness arguments. Taclets are also easier to
read and to maintain than Java code. A typical AE taclet needs ca. 50–60 lines
of text (excluding comments and empty lines). For the implementation, we had
to extend the taclet language by various features like new variable conditions

Abstract Execution V

loopScopeInvariantAEUnrollingSplitCond
Γ ` {U}Inv, ∆ (initially valid)
Γ ` {U} {Uhavoc}

(
Inv → [π (preserved & use case)

boolean x = true; �x
if(e1&&e2) {

{ (if(e1) { if(e2) body } else break;)i }
x = false;

} x	 ω]
(
(x .= TRUE → ϕ[Post(result,TRUE)]) ∧
(x .= FALSE → (Inv ∧ ϕ[Post(result,FALSE)]))

))
, ∆

Γ ` {U}[π while(e1&&e2) body ω](ϕ[Post(result,TRUE)]), ∆
i ≥ 1

Fig. 9: Special “Unrolling” Loop Scope Invariant Rule for Abstract Execution,
Harmonizing Iteration Structure for a Compound Loop Condition

and term transformers (both allow to inline small portions of Java code) and a
new loop construct for realizing the “· · · ” in rules like nonVoidLoopAERule.

VI Dominic Steinhöfel and Reiner Hähnle

M
ov

e
Sta

te
m

en
ts

to
 C

all
er

s

Extr
ac

t M
et

ho
d

(w
ith

 fie
ld)

Extr
ac

t M
et

ho
d

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Pre

fix
)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Pos

tfix
)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Tr

y C
at

ch
 P

os
tfix

)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Tr

y C
at

ch
 P

os
tfix

, n
o

fin
all

y)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
co

m
ple

x a
bs

tra
ct

ex
pr

es
sio

n)

Dec
om

po
se

 C
on

dit
ion

al

Slid
e

Sta
te

m
en

ts

Rem
ov

e
Con

tro
l F

lag
 (M

an
ua

ll U
nr

oll
ing

)

Rem
ov

e
Con

tro
l F

lag
 (U

nr
oll

ing
 In

v R
ule

)

Rep
lac

e
Exc

ep
tio

n
with

 Te
st

(S
ing

le
Var

iab
le

Roll
ba

ck
)

Rep
lac

e
Exc

ep
tio

n
with

 Te
st

(S
ko

lem
 L

oc
se

t R
oll

ba
ck

)

Spli
t L

oo
p

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0

1

2

3

4

5

6

7

8

9

#APS
Auto mode time [ms]
Nodes

#APS

Fig. 10: Performance: Numbers of nodes and APSs and auto mode time

M
ov

e
Sta

te
m

en
ts

to
 C

all
er

s

Extr
ac

t M
et

ho
d

(w
ith

 fie
ld)

Extr
ac

t M
et

ho
d

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Pre

fix
)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Pos

tfix
)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Tr

y C
at

ch
 P

os
tfix

)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
Tr

y C
at

ch
 P

os
tfix

, n
o

fin
all

y)

Con
d.

Dup
l.C

on
d.

Fra
gm

. (
co

m
ple

x a
bs

tra
ct

ex
pr

es
sio

n)

Dec
om

po
se

 C
on

dit
ion

al

Slid
e

Sta
te

m
en

ts

Rem
ov

e
Con

tro
l F

lag
 (M

an
ua

ll U
nr

oll
ing

)

Rem
ov

e
Con

tro
l F

lag
 (U

nr
oll

ing
 In

v R
ule

)

Rep
lac

e
Exc

ep
tio

n
with

 Te
st

(S
ing

le
Var

iab
le

Roll
ba

ck
)

Rep
lac

e
Exc

ep
tio

n
with

 Te
st

(S
ko

lem
 L

oc
se

t R
oll

ba
ck

)

Spli
t L

oo
p

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Auto mode time [ms]

Nodes

[ms]

Fig. 11: Performance: Numbers of nodes and auto mode time

Abstract Execution VII

Listing 6: Remove Control Flag,
Original

while (!done && i < threshold) {

if (condition) {
abstract_statement Body;
done = true;

}

i++;

}

Listing 7: Remove Control Flag,
After Unrolling

while (!done && i < threshold) {
if (!done) {

if (i < threshold) {
if (condition) {

abstract_statement Body;
done = true;

}
}
i++;

} else break;
if (!done) {

if (i < threshold) {
if (condition) {

abstract_statement Body;
done = true;

}
}
i++;

} else break;
}

Listing 8: Before
abstract_statement Guard;
if (guard) {

abstract_statement Then;
} else {

abstract_statement Else;
}

abstract_statement Post;
return result;

Listing 9: After
guard = mGuard(result);
if (guard) {

tmp = mThen(result, guard, tmp);
} else {

tmp = mElse(result, guard, tmp);
}

abstract_statement Post;
return result;

//...

//@ declares final(args);
private Object mThen(Object result,

boolean guard, Object tmp) {
abstract_statement Then;
return tmp;

}

Fig. 12: The Decompose Conditional Refactoring Technique

VIII Dominic Steinhöfel and Reiner Hähnle

Listing 10: Before
abstract_statement P;
abstract_statement Q;
abstract_statement R;
return result;

Listing 11: After
abstract_statement P;
tmp = extracted(res, tmp);
abstract_statement R;
return result;

// ...

//@ declares final(locals(P)), final(args);
public Object extracted(Object res,

Object tmp) {
abstract_statement Q;
return tmp;

}

Fig. 13: The Extract Method Refactoring Technique

Listing 12: Before
result = called();

abstract_statement B;

return result;

// ...

//@ declares final(args);
public Object called() {

abstract_statement C;
abstract_statement A;
return result;

}

Listing 13: After
result = called();

abstract_statement A;
abstract_statement B;

return result;

// ...

//@ declares final(args);
public Object called() {

abstract_statement C;
return result;

}

Fig. 14: The Move Statements to Callers Refactoring Technique

Listing 14: Before
abstract_statement Init;

try {
//@ exceptional_behavior
//@ requires throwsExc;
abstract_statement Normal;

} catch (Throwable t) {
abstract_statement Rollback;
abstract_statement Exceptional;

}

abstract_statement After;
return result;

Listing 15: After
abstract_statement Init;

if (!throwsExc) {
//@ exceptional_behavior
//@ requires throwsExc;
abstract_statement Normal;

} else {
abstract_statement Rollback;
abstract_statement Exceptional;

}

abstract_statement After;
return result;

Fig. 15: The Replace Exception With Test Refactoring Technique

Abstract Execution IX

Listing 16: Before
abstract_statement A;
abstract_statement B;
abstract_statement C;
abstract_statement D;
abstract_statement E;

Listing 17: After
abstract_statement A;
abstract_statement D;
abstract_statement C;
abstract_statement B;
abstract_statement E;

Fig. 16: The Slide Statements Refactoring Technique

Listing 18: Before
abstract_statement PreProc;

abstract_statement InitA;
abstract_statement InitB;

for (int i=0;
i < loopArgs.length; i++) {

o = loopArgs[i];
//@ assignable outA;
abstract_statement LoopBodyA;
//@ assignable outB;
abstract_statement LoopBodyB;

}

//@ assignable result;
//@ accessible outA;
abstract_statement PostProcA;
//@ assignable result;
//@ accessible outB;
abstract_statement PostProcB;

abstract_statement PostProc;
return result;

Listing 19: After
abstract_statement PreProc;

abstract_statement InitA;
for (int i=0;

i < loopArgs.length; i++) {
o = loopArgs[i];
//@ assignable outB;
abstract_statement LoopBodyB;

}
//@ assignable result;
//@ accessible outA;
abstract_statement PostProcA;

abstract_statement InitB;
for (int i=0;

i < loopArgs.length; i++) {
o = loopArgs[i];
//@ assignable outB;
abstract_statement LoopBodyB;

}
//@ assignable result;
//@ accessible outB;
abstract_statement PostProcB;

abstract_statement PostProc;
return result;

Fig. 17: The Split Loop Refactoring

