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Abstract. We propose a new static software analysis principle called
Abstract Execution, generalizing Symbolic Execution: While the latter
analyzes all possible execution paths of a specific program, Abstract Ex-
ecution analyzes a partially unspecified program by permitting abstract
symbols representing unknown contexts. For each abstract symbol, we
faithfully represent each possible concrete execution resulting from its
substitution with concrete code. There is a wide range of applications
of Abstract Execution, especially for verifying relational properties of
schematic programs. We implemented Abstract Execution in a deduc-
tive verification framework and proved correctness of eight well-known
statement-level refactoring rules, including two with loops. For each
refactoring we characterize the preconditions that make it semantics-
preserving. Most preconditions are not mentioned in the literature.

1 Introduction

Reasoning about abstract programs, i.e. programs containing an abstract context
represented by placeholder symbols, is required whenever one aims to rigorously
analyze program transformation techniques. Notably in compiler validation, to
argue that a specific compilation or optimization step preserves the meaning of
any input program is a standard task. An established approach to this prob-
lem formalizes the abstract syntax and the semantics of the target programming
language as a set of inductive definitions, then proves properties of abstract pro-
grams via structural induction over the program syntax [7]. Early work relied on
pen-and-paper proofs [22,24]. Recently, interactive theorem provers are used to
mechanize correctness proofs, e.g., in CompCert [21] and CakeML [31]. The main
drawback is the very high effort required to mechanize a programming language
and to perform interactive proofs. In this paper we take a different approach to
reason about abstract programs that is automatic and based on symbolic exe-
cution. To make it work, we need to answer two questions: (i) Can one specify
abstract program contexts sufficiently without giving full inductive definitions?
(ii) If yes, which specification constructs are needed for abstract contexts?

We propose a new static software analysis principle called Abstract Execu-
tion (AE) that allows to automatically reason about abstract sequential programs
? This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.
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with side effects. An essential component of AE is a specification language for
abstract program contexts. This permits, in contrast to prior work [13,14,18,29],
to specify irregular termination behavior (exceptions, etc.) and fine-grained as-
sumptions on abstract programs. Here we target sequential Java programs, but
the principles of AE are equally applicable to other sequential languages.

Abstract Execution generalizes Symbolic Execution (SE) [5,8,17]. Symbolic
Execution means to execute programs with symbolic expressions as input val-
ues. When SE is embedded into a program logic [1], these symbolic values are
represented by first-order Skolem constants. Skolem symbols can also be viewed
as abstract symbols whose concrete domain value is not specified. In this sense,
SE is already abstract and it amounts to execution of abstract programs that
permit variables and fields to be initialized with unknown values. For example,
symbolic execution of a program “i++;” amounts to execution of the abstract
program “i0++;”, where i0 is a fresh Skolem symbol of type int.

AE in addition permits not only abstract values, but whole programs to ap-
pear as undefined expressions. In the program “if (i>0) p0 else p1”, for ex-
ample, the placeholders pi can be substituted with arbitrary concrete programs,
as long as the result is well-formed. From a semantic point of view, the difference
between abstract values and abstract programs is that (i) an abstract program
may change the value of arbitrary variables and fields, and (ii) its execution may
terminate abruptly, i.e., by returning, throwing an exception, or continuing or
breaking out of a loop. In other words, an abstract program can be seen as an
unknown partial function between execution states, i.e. its big-step semantics
[[p]]. In logic, such a function can be represented by a second-order Skolem sym-
bol. Therefore, AE amounts to a limited form of second-order reasoning: let p
be an abstract program and ϕ a first-order formula. Then `ae [p]ϕ holds iff the
weakest precondition of p w.r.t. ϕ is first-order derivable. For example:
`ae [int i; boolean b=b0; if (b) p0 else i=0;](b0

.= FALSE→ i .= 0)
To check the relation `ae automatically, we must provide a technical solution

to the following question: how can one implement weakest precondition reasoning
over abstract programs such that the result is a first-order formula? These are
the main building blocks of our solution to realize limited second-order inference
over programs in terms of first-order deduction: (1) second-order Skolemization
to represent the effects of placeholders like p0 on local variables and the heap,
(2) explicit modeling of all possible ways of irregular termination in separate SE
branches, (3) over-approximation of returned values and thrown exceptions by
first-order Skolemization, and (4) a specification language to describe the possi-
ble effect of second-order Skolem symbols as well as to define conditions when
irregular termination of concrete instances for abstract programs can happen.

Applications of Abstract Execution AE is applicable to many problems involving
reasoning about abstract programs. It can be instantiated to (at least) the follow-
ing tasks: (1) Execution of abstract method calls [6], a special case of AE; (2) au-
tomatic soundness proofs of program transformation and of (3) rule-based compi-
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lation [29]; (4) sound, automatic (“lazy”) symbolic execution over programs with
loops and calls, (5) incremental program development and synthesis [28]; (6) a
modular version of proof carrying code [26], where the contract of called methods
needs not to be known to the certificate provider. It is impossible to discuss all
these in this paper. Therefore, we focus on program transformation—task (2).
We study refactoring rules as described in Fowler’s well-known books [11,12]. We
model refactoring techniques as abstract programs, formalize assumptions under
which a refactoring is sound, and prove behavioral equivalence of the original
and refactored version for all concrete programs satisfying the abstract context.

The paper is structured as follows. In Sect. 2 we describe how to construct
abstract Java programs. Sect. 3 expounds our logic for AE. Sect. 4 contains our
case study about proving correctness of refactoring techniques. Sect. 5 discusses
related work, Sect. 6 concludes and gives an outlook to the future. An appendix
with more material is available at key-project.org/papers/ae/.

2 Specifying Abstract Programs

An abstract Java program is a program containing at least one Abstract Place-
holder Statement (APS) symbol. The syntax to declare an APS is:

abstract_statement P;

The symbol P is an identifier for an abstract statement. Semantically, every
APS with the same identifier occurring in a program or proof represents the
same program. The above APS may be substituted with any concrete Java
program accessing and assigning arbitrary fields and local variables, except that
it is not allowed to declare local variables visible outside. Additionally, a concrete
program may (1) throw any type of exception, (2) return from the method it
executes, (3) break to any surrounding block label, (4) continue to and break
from a surrounding loop, (5) continue to the label of a surrounding loop.

The possible behaviors of an APS are constrained by an abstract specifica-
tion. The syntax of the specification language extends block contracts [1,19] of the
Java Modelling Language (JML). JML [20] is a specification language for Java
used to describe the behavior of Java classes and methods. JML specifications
are embedded into Java code via comment lines starting with an “@” sign. An
APS is the declaration of an abstract placeholder symbol together with all specifi-
cation clauses that constrain it. We explain the involved concepts by specifying a
variant of Fowler’s Consolidate Duplicate Conditional Fragments refactoring [11]
step-by-step. The result, a fully specified program after refactoring is shown in
Listing 3 (on p. 5). Table 1 summarizes all specification constructs that may be
used in an APS.

Fig. 1 shows an unconstrained formalization of the refactoring. The abstract
code uses an idiom to formalize abstract expressions: it introduces a variable
representing the abstract expression (in this case, the boolean b) and precedes
it with the APS Init that assigns to b an unknown value. The idiom works as
expected if Init is constrained so it assigns a value exactly to b and not to any

https://www.key-project.org/papers/abstract-execution/
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Table 1: Specification constructs for APSs
Spec. Construct Explanation

locals(P) Refers to the Skolem (abstract) location set of local variables of
an APS with symbol P visible from outside.

declares skLocs; Specifies that an APS/method declares a list skLocs of Skolem
location set specifiers locals(·), opt. wrapped in final(·) mod-
ifiers, which can be used in APSs in the visible scope afterwards.

assignable locs; Declares the location set locs to be assignable by the APS. locs
is a list of variables, fields, and Skolem location set specifiers,
optionally wrapped in a hasTo(·) modifier.

accessible locs; Declares locs to be accessible by the APS.
return_behavior requires ϕ; Specifies that the APS returns iff ϕ holds.
exceptional_behavior requires ϕ; Spec. that the APS throws an exc. iff ϕ holds.
break_behavior requires ϕ;
continue_behavior requires ϕ;

Specifies that the APS breaks/continues dur-
ing loop execution iff ϕ holds.

break_behavior (lbl) requires ϕ;
continue_behavior (lbl) requires ϕ;

Specifies that the APS breaks/continues to
the (loop) label lbl iff ϕ holds.

Listing 1: Before
abstract_statement Init;
if (b) {

abstract_statement P;
abstract_statement Q1;

} else {
abstract_statement P;
abstract_statement Q2;

}

Listing 2: After
abstract_statement P;

abstract_statement Init;
if (b) {

abstract_statement Q1;
} else {

abstract_statement Q2;
}

Fig. 1: Unconstrained formalization of the “Consolidate Duplicate Conditional
Fragments” Refactoring, “Pullout Prefix” variant [11]

other variable. JML uses the assignable clause to specify which locations can
be assigned a value, but does not enforce the assignment. Hence, we extend JML
with the hasTo( · ) keyword. The specification “//@ assignable hasTo(b);”
enforces that the specified abstract code assigns a value exactly to b.

Observe that the refactoring is unsound, whenever the APS P influences the
value of b. If, for instance, P sets b to true, the else branch of the if statement
in the refactored program is never reached. A drastic solution is to specify “//@�

assignable \nothing;” for P which excludes any assignment. This, however,
restricts the refactoring rule too severely to be useful. Assume the depicted pro-
gram fragments occur in the scope of a method with a variable result that is re-
turned at the end. Then we might constrain P with “//@ assignable result;”
which forbids assignments to b (because it allows assignments exactly to result),
but renders P still useful. But this is not restrictive enough: The abstract pro-
gram Init that initializes b may still access arbitrary locations and assign them
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Listing 3: Fully specified abstract program for the refactored version
//@ axiom mutex{throwsExc(P),
//@ throwsExc(Init), returns(P)};

//@ declares locals(P);
//@ assignable locals(P), result;
//@ accessible locals(P), result, args;
//@ return_behavior requires returns(P);
//@ exceptional_behavior requires throwsExc(P);
abstract_statement P;

//@ assignable hasTo(b);
//@ accessible args;
//@ return_behavior requires false;
//@ exceptional_behavior requires throwsExc(Init);
abstract_statement Init;

if (b) {
//@ declares locals(Q1);
//@ assignable \everything;
//@ accessible \everything;
abstract_statement Q1;

} else {
//@ declares locals(Q2);
//@ assignable \everything;
//@ accessible \everything;
abstract_statement Q2;

}

to b. Thus, P can indirectly influence the control flow by assigning a value to
the variable result which could then affect Init’s choice for b. To address this
issue we proceed as follows:

We add to all APSs in Fig. 1 (except Init) a “declares” annotation. It
declares abstract “Skolem” location sets that can be instantiated with arbitrary
concrete local variable declarations visible from outside. For example, to P we
add the annotation “//@ declares locals(P);”. To specify that a method con-
taining APSs receives an unknown set “args” of parameters, we annotate it with
“//@ declares args;”. Abstract location sets in declarations can be declared
final by surrounding them with “final( · )”. This prevents them from occurring
in assignable clauses. Continuing the example, we add to P the annotation
“//@ assignable locals(P), result;”, to Init “//@ accessible args;”.

Proving correctness of the refactoring still fails, however, for two reasons.
The first is: we have not excluded that Init contains a return statement. Since
Init’s only task is to initalize b, this should never happen. We add the an-
notation “//@ return_behavior requires false;” to Init, specifying that a
return requires the specified condition—here falsity—which excludes returning.

The second reason why the refactoring is not yet correct is that Init might
raise an exception. This is entirely possible and a real problem: If we permit P
to return or throw an exception, but Init may also throw an exception, then
the refactored and the original program have different behavior. We have two
options: (i) We deny Init to throw an exception by adding the annotation
“//@ exceptional_behavior requires false;” or, more generally, (ii) we en-
force that if Init throws an exception, then P can neither throw an exception
nor can it return. The latter is achieved with the help of the abstract functions
throwsExc(Init), throwsExc(P), and returns(P) of Boolean type. They qual-
ify the requires clauses that restrict exceptional and returning behavior of Init
and P. A global axiom declares them to be mutually exclusive.

Listing 3 shows the specified refactored program. Similar annotations apply
to the original version. For Q1 and Q2, we permit assigning/accessing all loca-
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assignment
Γ ` {U}{x := e}[π ω]ϕ,∆
Γ ` {U}[π x=e; ω]ϕ,∆

e is side effect-free

Fig. 2: SE rule for variable assignment

tions (“\everything”). This is default, so these declarations can be left out. The
annotation “//@ declares final(args);” would have to be added to the sur-
rounding method declaration. With the specification in Listing 3 we can prove
equivalence of the original and refactored program for any concrete instance
matching the abstract program structurally and satisfying its I/O and control
flow constraints. Having proved equivalence, the refactoring can be applied in
either direction. This is relevant: many of Fowler’s refactorings are bi-directional.
We continue with formalizing AE over constrained APSs in a program logic.

3 Abstract Execution Logic

Our implementation of AE is realized on top of the symbolic execution framework
of the deductive verification system KeY [1]. It is based on Java Dynamic Logic
(JavaDL), a program logic for the Java language.

3.1 Principles of JavaDL

JavaDL extends sorted First-Order Logic (FOL). Java programs appear inside
logical formulas as modalities, of which there are two types: The box modality
[p]ϕ expresses that if program p terminates, then the postcondition ϕ holds in
any final state (partial correctness). The diamond modality 〈p〉ϕ additionally
requires p to terminate (total correctness). To prove the validity of formulas, i.e.
[p]ϕ or 〈p〉ϕ holds in any initial state, JavaDL has a sequent calculus comprising
FOL and theory-specific rules, as well as rules realizing SE of Java programs.
A Hoare triple {ψ} p {ϕ} is equivalent to the JavaDL formula ψ → [p]ϕ.

The SE rules of the JavaDL calculus reduce a Java statement to first-order
assumptions and a separate syntactic category called symbolic updates repre-
senting symbolic state transitions. The atomic building blocks of updates are
the empty update Skip, representing the identity state transition, and the el-
ementary update x := t for the state transition where variable x is assigned
the value of term t. Two updates U1, U2 can be combined into a parallel up-
date U1 || U2: the state changes of U1 and U2 are executed simultaneously; in
case both assign to the same variable, the assignment in U2 “wins”. Only in the
absence of such “conflicts”, parallel composition is commutative. Updates are
applied to terms t and formulas ϕ: {U}t and {U}ϕ represent the value of term t
and truth value of formula ϕ after the state change effected by U , respectively.
Parallel update composition {U1 || U2}ϕ is different from sequential composition
{U1}{U2}ϕ. In the sequential case, right-hand sides of U2 are interpreted in the
state resulting from U1. In the parallel case, they are interpreted in the same
pre-state. The formula {U1}{U2}ϕ is equivalent to {U1 || {U1}U2}ϕ.
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Fig. 2 depicts an SE rule using an update to represent the effect of an as-
signment of an expression without side effects to variable x. As usual, sequent
calculus rules are read “bottom-up”, i.e. the rule symbolically executes the as-
signment by turning it into a symbolic update. SE rules operate on the first active
(i.e. executable) statement of a program, here the assignment. The remaining
program is contained in π ω, where the prefix π consists of opening braces, la-
bels, try-blocks, etc., and the postfix ω of closing braces, blocks, and remaining
statements. The program π ω is a well-formed Java program. Sequent calculus
rules have zero or more premises (sequents on top of the rule); zero premises
characterize a rule that closes a proof case, more than one premise causes a
proof to split. An example of the latter is the rule for an if-statement (see
web appendix). The conclusion (bottom part) of a rule consists of exactly one
sequent. A rule is sound if the correctness of the conclusion follows from the
correctness of all premises. A sequent Γ ` ∆ is correct if the conjunction of the
formulas in the set Γ implies the disjunction of those in ∆. Details are in [1].

We need a recently introduced concept of JavaDL for reasoning about loops:
loop scopes [30]. A loop scope �xp x	 is a scope for a loop body p. It results from
SE of a loop while(b){p}. The boolean flag x encodes completion information
about the loop: it is set to TRUE if the loop is exited (either normally or by
irregular termination) and to FALSE if it continues with another iteration. Using
the value of x, a postcondition can distinguish both cases.

3.2 Formalization of Abstract Execution

We first give a definition of the domain of locations used in declares, accessible
and assignable specifications of APSs. The symbol “allLocs” is introduced for
the “\everything” specifier in accessible and assignable specifications.

Definition 1. The set LocsConcr of concrete locations consists of program vari-
ables x and, for an object o and field identifier f, field locations (o, f). The
set LocsSk of Skolem location sets consists of uninterpreted functions locSk

representing arbitrary sets of concrete locations LocsConcr . We define Locs =
LocsConcr ∪ LocsSk ∪ {allLocs}, where the symbol allLocs represents all concrete
locations LocsConcr . The set of assignable locations is defined as LocsAssgn =
Locs∪{loc! | loc ∈ Locs \{allLocs}} which also includes “have-to” locations loc!.

In Sect. 2, we introduced the specification elements of APSs. These are for-
malized in the subsequent definition of the logic representation of an APS.

Definition 2. Let id be an identifier symbol, decls ⊆ LocsSk, assignables ⊆
LocsAssgn and accessibles ⊆ Locs. An Abstract Placeholder Statement is a tuple

(id, decls, assignables, accessibles, specs)

where “specs” represents behavioral specifications and is a tuple of the form:

(returnsSpec, excSpec, continuesSpec,
breaksSpec, continuesSpecLbl, breakSpecLbl)
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The elements returnsSpec, excSpec, continuesSpec, breaksSpec are optional: they
are the empty set or a singleton of a formula specifying when an APS returns,
throws an exception, continues, and breaks, respectively. Elements breakSpecLbl,
continuesSpecLbl are partial functions from labels to formulas, specifying when
an APS continues a labeled loop or breaks from a labeled block or loop.

We write “APS P” short for “the APS with identifier symbol P”. Abstract
Execution reasons about the behavior of all possible concrete programs with
which APSs “legally” may be instantiated, formally:

Definition 3. Let pa be an abstract program with occurrences of APS symbols
P1, . . . Pn. We call the substitution with concrete programs P0

i for each Pi a legal
instantiation iff (1) the result from substituting all occurrences of Pi by P0

i in pa

is a compilable Java program, and (2) all P0
i satisfy all constraints of the APSs

declaring the Pi.

Example 1. We substitute P in Listing 3 with “int z=result++;”. This is legal
if z is undeclared in the visible scope. The substitution instantiates the location
set “locals(P)” with {z}, affecting further instantiations referring to it. The
substitution of “y=z;” for P is illegal: First, it assigns a variable which is not
contained in its assignable set; second, if z is not contained in the instantiation of
args, it accesses an undeclared variable z; third, the program is not compilable if
y and z are undeclared. Let param be in the instantiation of args. Substituting
P with “int z=result/param;” and Init with “b=result/param;” is illegal
since both could throw an exception, contradicting the axiom.

SE of an APS must over-approximate the behavior of all legal instantiations.
To model this in the logic, we use second-order Skolemization. Given an APS
(P, decls, assignables, accessibles, specs), we create what we call a Skolem update
“UP(assignables :≈ accessibles)” with Skolem path condition “CP(accessibles)”
fresh for P. The term “fresh for” means that the symbols UP, CP are created
freshly (as usual for Skolemization) when P first occurs in a proof context, but
are re-used each time when P re-occurs. This ensures that each occurrence of
an APS symbol represents the same program. We define the meaning of Skolem
update and Skolem path condition by extending the notion of legal instantiation.
In the definition we assume all Skolem location sets in LocsSk to be instantiated
with concrete locations.

Definition 4. Let an APS P with assignables ⊆ LocsAssgn\LocsSk, accessibles ⊆
Locs \ LocsSk be given. An abstract update UP(assignables :≈ accessibles) may
be instantiated with any concrete update x1 := t1 || . . . || xn := tn for which the
following conditions hold: (1) either allLocs ∈ accessibles or the ti depend at most
on locations in accessibles; (2) either allLocs ∈ assignables or for each xi one of
xi ∈ assignables or x!

i ∈ assignables; (3) for all x! ∈ assignables, there is an i
such that x = xi. An abstract path condition CP(accessibles) may be instantiated
with any closed formula ϕ depending at most on locations in accessibles.
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simpleAERule
Γ ` {U}{UP(allLocs :≈ allLocs)}(CP(allLocs)→ [π ω]ϕ), ∆

Γ ` {U}[π abstract_statement P; ω]ϕ,∆

Fig. 3: Simple AE rule without abrupt termination

Definition 5. Abstract JavaDL extends JavaDL syntax as follows: (1) updates
can be Skolem updates; (2) Skolem path conditions are also formulas; (3) pro-
grams can be abstract. Abstract sequents and sequent rules are defined as before,
but range over abstract JavaDL formulas.

A JavaDL sequent calculus rule is sound if the validity of the conclusion fol-
lows from the validity of all premises [1]. We can leave this definition unchanged
provided that we define validity of abstract sequents suitably:

Definition 6. A sequent S0 is a legal instantiation of an abstract sequent S if
S0 results from substituting all Skolem updates, Skolem path conditions and APS
symbols in S with legal instantiations. An abstract sequent is valid iff all its legal
instantiations are valid in JavaDL.

One of the simplest possible AE rules (first mentioned in [29]) is shown in
Fig. 3. It is only applicable for an APS whose specification and legal instantia-
tions exclude irregular termination.

Theorem 1. The Abstract Execution rule simpleAERule (Fig. 3) is sound.

Proof. Let P0 be any legal instantiation of P. Since P0 cannot terminate irregu-
larly, symbolic execution transforms the sequent Γ ` {U}[π P0 ω]ϕ,∆ to one of
the shape Γ ` {U}{U0}(C0 → [π ω]ϕ), ∆.1 Assume the premise of simpleAERule
is valid (otherwise, the rule is trivially sound). The instantiations U0 of UP and
C0 of CP are legal (the allLocs location allows reading and writing arbitrary
locations). So, by assumption, Γ ` {U}{U0}(C0 → [π ω]ϕ), ∆ is valid and, by
soundness of SE, also the conclusion. Since P0 was chosen arbitrarily, the ab-
stract sequent in the conclusion of simpleAERule is valid. ut

The simpleAERule rule is unsatisfactory: it is too restrictive on irregular ter-
mination. It is also too abstract, because the abstract update and path condition
in the premise may write and read any location. The abstract update can erase
all variables and the whole heap, which prevents proving interesting properties.
More useful rules can be obtained for specific contexts in which an APS occurs
in the conclusion. Depending on the context, legal instantiations can lead to
different ways of irregular termination.

Fig. 4 shows a rule for AE within a loop scope and a non-void method, but
outside the scope of loop labels. In contrast to simpleAERule, nonVoidLoopAERule
1 If the statement causes a split, like an if statement, we still can combine the arising
sequents to a single one by state merging [27].



10 Dominic Steinhöfel and Reiner Hähnle

nonVoidLoopAERule
Γ ` {U}{UP(assignables :≈ accessibles)}

{returns := returns0 || result := result0 || exc := exc0 ||
breaks := breaks0 || continues := continues0 ||
breaksToLbl_1 := breaksToLabel1 0 || · · · ||
breaksToLbl_n := breaksToLabeln0}(

CP(accessibles)
∧ mutex (returns, exc 6= null, breaksToLbl_1, · · · , breaksToLbl_n)
∧ (returns .= TRUE↔ returnsSpec)? ∧ (exc 6= null↔ excSpec)?

∧ (breaks .= TRUE↔ breaksSpec)?

∧ (continues .= TRUE↔ continuesSpec)?

∧ (breaksToLbl_1 .= TRUE↔ breaksLbl1Spec)? ∧ · · ·
∧ (breaksToLbl_n .= TRUE↔ breaksLblnSpec)?

→ [π l1 : { · · · { ln : {
�x if (returns) return result; if (exc != null) throw exc;

if (breaks) break; if (continues) continue;
if (breaksToLbl_1) break l1; · · · if (breaksToLbl_n) break ln;
Rest1 x	

Rest2 }} · · · } ω]ϕ
)
,∆

Γ ` {U}[π l1 : { · · · {ln : {
�x abstract_statement P; Rest1 x	 Rest2

}} · · · } ω]ϕ,∆

Fig. 4: AE rule for an APS within a loop scope.

uses the assignables/accessibles specifications of the APS syntax. Irregular ter-
mination is modeled by if statements inside the loop scope in the premise. The
conditionals depend on variables initialized with fresh constants in the update
after the abstract update. E.g., returns is initialized with a constant returns0.

Without a specific context, SE will split at each if statement and follow both
branches, e.g., one where P returns and one where it does not. Using the behavior
specification, this can be fine-tuned: For example, in the path condition in the
premise, there is an optional (marked with ?) conjunct “(returns .= TRUE ↔
returnsSpec)?”. This lets one control the value of the guard returns with the
formula returnsSpec. The behavior specifications stem from the specifications of
the abstract symbol P in the conclusion as detailed in Sect. 2. The function mutex
is interpreted such that at most one of its arguments is true at any time: here
this specifies that there is not more than one reason for a program to terminate
irregularly.2 A proof of the following Thm. 2 is provided in the web appendix.

Theorem 2. The Abstract Execution rule nonVoidLoopAERule (Fig. 4) is sound.

Design principles for AE rules. The principles underlying the above rules apply
to other sequential languages than Java as well. To create a new AE rule, we
proceed as follows. Given a context in which an APS declaration is the active
statement (a loop, method, labeled block, etc.), we model possible side effects of
2 It is possible that, for instance, during returning an exception is thrown: this simply
means that exception is the reason for termination.
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that APS with separate, conditioned SE branches in the premise. For soundness
it is crucial not to miss any irregular termination cases. We point out that instead
of performing exhaustive structural induction, we merely distinguish different
paths of program completion. For paths depending on values (as for a return or
exception), Skolem constants are introduced. The conditioned premises depend
on flags that establish a link to the APS’s specification; abstract updates and
path conditions are added as in nonVoidLoopAERule. AE rules are not specific
to the target application of this paper (correctness of refactoring rules), but can
be used in any of the areas mentioned in the introduction.

3.3 Abstract Update Simplification

The JavaDL calculus comes with many simplification rules for concrete updates:
{U1}{U2}ϕ simplifies to {U1 || {U1}U2}ϕ, updates applied to formulas without
program variables are removed, etc. In addition, spurious updates, such as those
assigning variables not occurring in their scope, are removed. To reason about
abstract programs, we need corresponding rules for abstract updates.

We designed a set of simplification rules for abstract updates (see Table 2):
(1) Remove spurious updates: From the assignables part of an abstract update,
delete those not occurring in the scope or that are overwritten before being read;
(2) two rules handle the interplay between concrete and abstract updates; (3) two
rules handle concatenation of abstract updates: When we cannot further sim-
plify a formula {U1}{U2}ϕ, we connect the abstract updates by a concatenation
operator, resulting in {U1 ◦U2}ϕ. This is not needed for concrete updates which
are directly simplified as shown above. Within a concatenation, abstract updates
can be commuted if their assignable/accessible specifications do not interfere.

4 Proving the Correctness of Refactoring Techniques

We studied five refactoring techniques from Fowler’s classic book [11] and three
from the second edition [12]. We choose refactorings operating at the statement
level, because they are directly expressible in JavaDL and—for the time being—
exclude techniques that reorganize class hierarchies, rename constructs, or move
methods. For each of the eight techniques we formalized the starting point and
the result of the refactoring as a suitably specified abstract program (see Sect. 2),
and then proved their equivalence with the AE calculus discussed in Sect. 3.
Thus, we obtain soundness of, for example, Extract Method at the same time as
of its inverse, Inline Method. All proofs are fully mechanized in KeY [1].

Methodology. For each refactoring, we create a Java class Refactor with two
public methods: before contains an abstract program representing the input
to the refactoring, after the refactored result. We start with minimal annota-
tions in the occurring APSs including declares directives and standard return
and assignable specifications for the abstract expressions idiom. The following
JavaDL formula performs AE of an abstract program p on a Refactor object o
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Table 2: Simplification rules for abstract updates
Simplification Scheme Description

{UP(x, y :≈ . . .)}ϕ(x) 
{UP(x :≈ . . .)}ϕ(x)

Ineffective assignables are removed, abstract updates
with no assignables dropped.

{x1 := t1 || x2 := t2 || . . . }
{UP(. . . , x1, . . . :≈
. . . , x2, . . .)}ϕ 

{x1 := t1 || . . . }
{UP(. . . , x1, . . . :≈
. . . , t2, . . .)}{x2 := t2}ϕ

Applies variable assignments to the accessibles of the
abstract update and pushes down elementary updates
not assigned by the abstract update. Elementary updates
that have to be assigned (overwritten) are dropped later.

{UP(. . . , y!, . . . :≈ . . .)}
{. . . || x := y || . . . }ϕ(x) 

{UP(. . . , x!, . . . :≈ . . .)}
{. . . || . . . }ϕ(x)

Eliminates a renaming substitution “y for x”: Since the
concrete update assigns to x a value chosen by UP (which
has to assign y), the abstract update can as well directly
choose that value. Sound because y is not contained in ϕ.

{UP}{UQ}ϕ {UP ◦ UQ}ϕ Sequential to “concatenated” update application.

UP(assgn1 :≈ access1)◦
UQ(assgn2 :≈ access2) 
UQ(assgn2 :≈ access2)◦
UP(assgn1 :≈ access1)

Abstract updates within concatenations can be com-
muted if their assignable and accessible specifiers are
independent; i.e., assgn1 has to be disjoint from assgn2
and access2, and similarly vice versa.

and records the result (“Flag” in the postcondition is explained later):

AE(p,Flag) = {result := result0 || . . .}
〈try {result=o.p(result, . . . )@Refactor;}
catch (Throwable t) {result=t;}〉Post(result,Flag)

(1)

Equivalence of the original and the refactored program is established by proving
the formula “AE(before,TRUE) ↔ AE(after,TRUE)”. This is loaded into
KeY and an automatic proof is started. In all but one refactoring technique (first
in Table 3), the proof cannot be finished and open goals remain. The reason is—
quite simply—that Fowler’s refactoring techniques are not sound in general [10].
As he points out, they rely on robust test suites and a “try-compile-and-test”
loop trusted to unveil potential faults introduced by a refactoring.

In our setting we have the opportunity to restrict the programs that can
be soundly refactored via suitable annotations of the APSs used to describe
refactoring source and target. Fowler in most cases does not mention these re-
strictions. Fortunately, inspection of uncloseable proof goals provides clear hints
on the nature of the required annotations.

A typical example is when all open proof goals expect an APS P to throw
an exception (assumption exc 6= null occurs in each unprovable goal). This is
addressed by adding a constraint on P that forbids to throw exceptions. Another
common situation concerns too liberal accessible/assignable specifications.
These lead to open goals that contain a sequent of the form {U}ϕ ` {U ′}ϕ that



Abstract Execution 13

Listing 4: Before
done = false; i = 0;
while (!done && i < threshold) {

if (condition) {
abstract_statement Body;
done = true;

}
i++;

}
return result;

Listing 5: After
i = 0;
while (i < threshold) {

if (condition) {
abstract_statement Body;
break;

}
i++;

}
return result;

Fig. 5: The Remove Control Flag Refactoring Technique

becomes valid when the abstract updates U and U ′ are identical. Any differences
give hints on possible annotations that permit to close the proof.

Once a proof is complete, the formalization of a refactoring should be checked
for validity, i.e. whether the intention of the refactoring technique has been faith-
fully captured. Specifications should not be more restrictive than necessary and
permit substituting non-trivial programs for APSs. For example, it is easy, but
useless, to find a proof with “assignable \nothing;” specifications. For each
behavioral restriction, there should be a convincing justification. We discovered
non-trivial and justifiable restrictions for almost all the investigated refactoring
techniques (summarized in Table 3). Source code samples are in the appendix.

Complexity of checking legal substitutions. A closed equivalence proof about
abstract programs asserts that those programs behave equivalently for all legal
substitutions of concrete programs for APS symbols (Def. 3). Consequently, for
each concrete program one must check that all the constraints specified in APSs
are satisfied. These include syntactic restrictions (e.g., when inlining a method,
there are no recursive calls in the body) as well as behavioral ones. The latter
are not necessarily automatically checkable or even decidable. For example, to
decide whether a program throws an exception, is equivalent to reachability.
Even so, a formalized and proven refactoring technique makes its requirements
explicit that before were mentioned only informally (if at all). Not in general,
but in practice quite often, constraints can be proven in KeY.

Multiple specifications. It can make sense to create multiple formalizations of the
same refactoring technique. The restrictions that ensure soundness can differ de-
pending on (1) the program context (inside/outside a loop or labeled block), and
(2) the termination mode (normal, exceptional, break, etc.). The “consolidate
duplicate conditional fragments” technique in Table 3 exemplifies this.

Programs with loops. We studied two refactoring techniques involving loops:
Remove Control Flag [11] and Split Loop [12]. To handle loops we make use of
the Flag in formula (1) to separate runs leaving the loop from those leading to
further executions of the loop body. The value of Flag is controlled by the loop
scope parameter (the invariant rule in Fig. 7 in the appendix contains details).
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Table 3: Studied refactoring techniques and discovered behavioral constraints.
Refactoring Technique Discovered Restrictions Justification & Remarks

Consolidate duplicate
conditional fragments
(Extract Postfix) [11]

none —

Consolidate duplicate
conditional fragments
(Extract Prefix) [11]

• if guard may only
throw exc. if prefix ter-
minates normally;

• pulled out statement
may assign heap and
parameters iff guard
does not access it.

Irregular termination in both
guard and prefix affect final re-
sult. Influence on accessibles of
guard can change control flow
(whether if or else is taken).

Consolidate duplicate
conditional fragments
(Postfix of try-catch
to finally) [11]

• Program in try block
may not return;

• program in catch
block may not return
or throw exception.

A finally block is always exe-
cuted, even after a return. This
changes the returned result be-
fore and after the refactoring.

Consolidate duplicate
conditional fragments
(Postfix of try-catch,
no finally) [11]

none Fowler talks about moving the postfix “to the final
block”, leaving unspecified whether this refers to
the finally block or to the statements after try.
Only in the latter case no restrictions apply.

Decompose
Conditional [11]

Special case of “Extract Method”, see below.

Extract Method [11] Extracted fragment
• must not return;
• may only assign heap

and a local variable.

A return after extraction does
not affect the top-level method.

Replace Exception
with Test [11]

There has to be a “roll-
back” program in the
catch/else block, pro-
gram in try/if may only
assign variables reset by
that program.

The program in try/if may
change part of the state before
throwing an exception, there-
fore the result after the excep-
tion/test can differ.

Move Statements
to Callers [12]

Neither the moved state-
ment nor the remaining
program may return.

If the remaining program in the
called method returns early,
the moved one is not executed
after, but before refactoring.

Slide Statements [12] All programs participat-
ing in the sliding, i.e. the
swapped parts and the
one in the middle
• must not return or

throw an exception;
• must be independent.

Independent means the partici-
pating programs write to loca-
tions that the others do not ac-
cess. Abrupt termination would
change the result.

Split Loop [12] Explained in text. Example with loop.

Remove Control Flag [11] Explained in text. Example with loop.



Abstract Execution 15

The Remove Control Flag refactoring in Fig. 5 is interesting, because the
number of runs of the loop before and after the refactoring differs by one (the
guard needs to be executed one extra time before). This complicates the proof
since we obtain Post(_result,FALSE) for one case and Post(_result,TRUE)
for the other. We solve this by harmonizing the iteration structure via an un-
rolling technique [16] and an intermediate refactoring. Alternatively, one can
code the unrolling inside a modified loop invariant rule (Fig. 9 in the appendix).

The Split Loop refactoring splits a loop with two independent parts into two
successive loops. We had to supply several annotations to the APSs. For instance,
the first part of the loop body must not break or continue (since otherwise, the
second part is skipped, which is not the case after the refactoring), while the
second part must not return, throw an exception, or break, since then we would
have to relate runs continuing loop iteration with others exiting the loop.

Performance All proofs are performed automatically in KeY without user inter-
action. For the refactorings with loops, currently small proof scripts (≈ 40 lines)
are needed for loop coupling. The proofs have 2,900–40,000 nodes (median:
7,100) and take 6–300 s (median: 29 s) to complete. All problem files with de-
tailed statistics, together with a KeY version implementing AE, are available at
key-project.org/papers/ae/.

5 Related Work

The idea of Abstract Execution was first mentioned in our earlier work [29],
where it is used to formalize the correctness of compilation rules of a Java-to-
LLVM IR compiler. There, APSs could not be annotated and irregular termina-
tion was excluded; also, every APS can assign and access any location. In the
present paper we lift these restrictions, provide an implementation and a case
study. Abstract execution of APSs can be seen as a generalization of abstract
operation contracts [6,15] to abstract block contracts. In the former, contracts are
abstract, but programs concrete; we generalize this to abstract programs. This
amounts to encoding limited second-order inference (no induction, no higher-
order quantification) over programs into first-order (dynamic) logic.

The principal use cases for AE reside in the area of relational verification [4],
which includes, but is not limited to: general-purpose relational proofs about pro-
grams [2,16], correctness proofs for refactorings [13], regression verification [14],
proven-correct compilation [21,31] and compiler optimizations [23,18], program
synthesis [28], information flow properties (e.g., by self-composition [3,9]).

There are several approaches to prove relational properties of concrete pro-
grams (e.g., LLRÊVE [16]). Barthe et al. [2] propose the construction of product
programs from two variable-disjoint programs as a general-purpose technique
for verifying relational program properties. After execution of the product pro-
gram, the result is checked for correctness, i.e. equality. This works even for
structurally different programs. Instead, we execute both programs in isolation
in an equivalence proof. This has the drawback of requiring a certain structural

https://www.key-project.org/papers/abstract-execution/
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similarity of the programs and explicit loop coupling, but it is more resilient in
the presence of irregular or non-termination. Product programs and AE are not
mutually exclusive: One can create a product of abstract programs.

Garrido & Meseguer [13] prove correctness of three Java refactoring tech-
niques based on an executable Maude semantics of Java. They focus on refactor-
ings not targeted by us (e.g., Pull Up Field). It is unclear whether this approach
works for statement-based refactorings including loops. Alive [23] permits prov-
ing automatically the correctness of “peephole optimizations” for LLVM. While
this approach reasons about classes of programs, it is parametric only in reg-
ister names and imposes other serious restrictions (e.g., no loops). Eilertsen et
al. [10] generate semantic correctness assertions that ensure preservation of pro-
gram semantics after refactoring. They work on concrete programs and perform
run-time, not static checking.

Godlin & Strichman [14] perform “Regression Verification” by transforming
loops into recursive functions and replacing recursive calls with uninterpreted
function symbols. The latter are similar to APSs, however, side effects or ir-
regular termination cannot be modeled, because functions are pure. Mechtaev
et al. [25] propose a mechanism for proving existential second-order properties
based on symbolic functions. Their goal is to find existential witnesses for those
functions by synthesis from a user-specified grammar. In contrast, we aim at uni-
versal properties, and APSs represent statements (with side effects), not func-
tions. The PEC system [18] for proving the correctness of compiler optimizations
uses meta variables ranging over expressions, variables and statements. The lat-
ter are “single-entry-single-exit”, whereas APSs can have multiple exit points, in-
cluding irregular termination. In addition, we permit annotations that constrain
possible behavior. The property to be proven in [18] is a certain bi-simulation
relation which is somewhat inflexible and requires lockstep execution.

6 Conclusion and Future Work

We proposed Abstract Execution of programs that contain APS symbols, a new
software analysis principle extending symbolic execution. AE permits to auto-
matically reason about partially unspecified programs. APSs allow irregular ter-
mination and include specification of assignable and accessible locations as well
as of termination behavior. This generalizes other approaches going into similar
directions. We implemented our method and applied it to eight Java refactoring
techniques, of which two require reasoning about loops. Our formalization of the
refactoring techniques makes implicit requirements explicit. It helps to better
understand and safely apply refactorings. We plan to investigate how to support
structurally different programs (e.g., comparing iterative and recursive versions
of the same algorithm), concurrent programs, and we intend to look at other ap-
plication areas. To prove the correctness of compiler optimizations automatically
using AE is a natural follow-up to our work on refactoring techniques.
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Appendix

We provide additional information and explanations that had to be left out of the
paper for space reasons. Numbered (sub-)sections relate to those of the paper.

2 Specifying Abstract Programs

Remark. The specification constructs listed in Table 1 include some syntactic
sugar that is removed before loading a problem into our tool; details about that
are provided in the implementation.

3.1 Principles of JavaDL

To help understanding the JavaDL sequent calculus a little better, we briefly
discuss three exemplary calculus rules. Figure 6 shows the rules allRight, orLeft
and ifElseSplit. The first two are logical first-order rules, whereas the last one is
a (splitting) Symbolic Execution rule. Rule allRight processes a universal quan-
tifier in the succedent of a JavaDL sequent by replacing the quantified variable
by a fresh Skolem constant. Because a sequent Γ ` ∆ is equivalent to the for-
mula

∧
Γ →

∨
∆, the logical rule orLeft splits the proof into two branches for

a disjunction in the antecedent of a sequent. A disjunction in the succedent (or
a conjunction in the antecedent) would be handled by simply adding the con-
stituents as individual formulas to the succedent (antecedent). Finally, ifElseSplit
also splits the proof into two branches. It is a “classical” Symbolic Execution
rule: because the expression simpleExpr (which stands for “simple expression”,
an expression without side effects) might contain symbolic values, we have to
evaluate the then and else branches separately. For each branch, we add as a
new precondition that simpleExpr evaluates to TRUE resp. FALSE.

allRight
Γ ` [x/c](ϕ), ∆
Γ ` ∀x;ϕ,∆

c is a fresh constant of suitable type

orLeft
Γ, ϕ ` ∆ Γ,ψ ` ∆

Γ,ϕ ∨ ψ ` ∆

IfElseSplit
Γ, simpleExpr .= TRUE ` {U}[π p1 ω]ϕ,∆
Γ, simpleExpr .= FALSE ` {U}[π p2 ω]ϕ,∆

Γ ` {U}[π if (simpleExpr) p1 else p2 ω]ϕ,∆

Fig. 6: Some example JavaDL calculus rules
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3.2 Formalization of Abstract Execution

Proof (Thm. 2). Let P0 be any legal instantiation of P. We create a program
P0
†, which is equivalent to P0, as follows: First, we transform P0 to a program P0′

without irregular termination. We define the program transformation operator
transf which replaces in the input program each occurrence of

– “return expr;” with “returns=true; result=expr; break outer;”,
– “break li;” with “breaksToLbl_i=true; break outer;”

and, for break and continue statements on the top level (not in the scope of a
loop within the input program), each occurrence of

– “break;” with “breaks=true; break outer;”,
– “continue;” with “continues=true; break outer;”.

The program P0′ then is defined as

P0′ =


outer: {

try { transf(P0) }
catch (Throwable t) { exc=t; }

}


The label outer is freshly introduced. The other flags introduced by transf coin-
cide with those in the premise of nonVoidLoopAERule. All boolean variables are
initialized with false, and exc with null. Since the considered Java fragment
is sequential, does not support reflection, and we additionally do not consider
errors (only exceptions), P0′ can only terminate regularly (if it does not termi-
nate, the conclusion of rule nonVoidLoopAERule is trivially valid). Note that the
rule excludes labeled continue statements, which is why we also do not consider
them here. Then, we define P0

† as:

P0
† =



P0′

if (returns) return result;
if (exc != null) throw exc;
if (breaks) break;
if (continues) continue;
if (breaksToLbl_1) break l1;
. . .
if (breaksToLbl_n) break ln;


The program P0

† is equivalent to P0 since, if P0 terminates regularly, the behavior
of P0′ equals that of P0 (the try statement has no effect) and the added if
statements are not entered. If irregular termination occurs, it is captured and
deferred equivalently to the outside. In the following, we consider, without loss
of generality, the instantiation of P in the conclusion with P0

† instead of P0.
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Assume that P0 terminates normally. Since we can assume that it respects
the contract of APS P, all the behavior specification formulas like returnsSpec
are equivalent to false, and the if statements in the premise are not entered.
The premise is therefore, in that case, logically equivalent to the one of rule
simpleAERule and the soundness argument similar to Thm. 1, except that the
abstract update and path condition do not range over all locations, but exactly
over the assignable and accessible locations of P0. Again, since P0 respects the
contract of P, we can find a suitable legal instantiation of the premise which
implies the conclusion.

If P0 terminates irregularly, we easily find a suitable legal instantiation of
the premise implying the conclusion for the breaking and continuing cases. For
the returning and exceptional cases, the validity of the premise implies that
the conclusion is valid for every possible returned result and thrown exception,
since the variables result and exc are set to fresh Skolem constants returns0
and exc0. In particular, it is therefore valid for the concretely returned result or
thrown exception. ut

4 Proving the Correctness of Refactoring Techniques

We created a variant of the existing loop invariant rule based on loop scopes
in JavaDL [30,32]. The new rule, depicted in Fig. 7, only applies to formulas
with a special type of post condition, namely those containing the uninterpreted
Post predicate used in AE equivalence proofs. In the part of the post condition
of the “preserved & use case” where in the case that the loop continues (i.e.,
the loop scope index x is FALSE), normally only the invariant has to be shown,
we additionally include the post condition (highlighted in gray), but with the
second component of the Post predicate set to FALSE. This provides us with
the possibility to only assume and show a simple invariant Inv containing, e.g.,
information necessary for showing termination, and to otherwise continue with
abstract relational reasoning, thereby relating runs continuing loop execution
separately from those leaving the loop.

Two other variants (Figures 8 and 9) are useful for situations where one
loop has a bigger amount of iterations than another. The first one implements
a general unrolling pattern as described, e.g., in [16], for harmonizing the iter-
ation structure of two loops. The second variant realizes the unrolling pattern
as displayed in Listings 6 and 7 along the Remove Control Flag example. It is
specialized to loops where the guards consist of two conjuncts and only the first
should trigger a direct break out of the loop. Both rules are parametric in a num-
ber i determining how often the body should be unrolled. Thus, they spare the
harmonization of the loop iteration structure by manual code transformation.

Performance

Figures 10 and 11 visualize proof sizes and needed time for proof completion
for the studied refactorings. Figure 10 also shows the numbers of APSs for all
models. Proof size roughly corresponds to auto mode time; higher numbers of
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loopScopeInvariantAE
Γ ` {U}Inv, ∆ (initially valid)
Γ ` {U} {Uhavoc}

(
Inv → [π (preserved & use case)

boolean x = true; �x
if(expr) {

body
x = false;

} x	 ω]
(
(x .= TRUE → ϕ[Post(result,TRUE)]) ∧
(x .= FALSE → (Inv ∧ϕ[Post(result,FALSE)] ))

))
, ∆

Γ ` {U}[π while(expr) body ω](ϕ[Post(result,TRUE)]), ∆

Fig. 7: Loop Scope Invariant Rule for Abstract Execution

loopScopeInvariantAEUnrolling
Γ ` {U}Inv, ∆ (initially valid)
Γ ` {U} {Uhavoc}

(
Inv → [π (preserved & use case)

boolean x = true; �x
if(expr) {

{ ( if(expr) body else break; )i }
x = false;

} x	 ω]
(
(x .= TRUE → ϕ[Post(result,TRUE)]) ∧
(x .= FALSE → (Inv ∧ ϕ[Post(result,FALSE)]))

))
, ∆

Γ ` {U}[π while(expr) body ω](ϕ[Post(result,TRUE)]), ∆
i ≥ 1

Fig. 8: “Unrolling” Loop Scope Invariant Rule for Abstract Execution

APSs usually lead to bigger proofs, although due to the influence of other factors
(unrelated proof tree branching, loops etc.), there is no direct correspondence.

Source Code Samples

The source code of most refactoring models is shown in Figs. 12 to 17. For space
reasons, we usually omit showing the JML specifications of the APSs.

Additional Implementation Remarks

In the KeY system, rules can either be programmed in Java as “built-in rules”, or
added as so-called taclets, schematic, theory-specific rules written in a domain-
specific language for SE rules [1, Chapter 4]. Our AE rules are written as taclets,
because this helps to modularize soundness arguments. Taclets are also easier to
read and to maintain than Java code. A typical AE taclet needs ca. 50–60 lines
of text (excluding comments and empty lines). For the implementation, we had
to extend the taclet language by various features like new variable conditions
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loopScopeInvariantAEUnrollingSplitCond
Γ ` {U}Inv, ∆ (initially valid)
Γ ` {U} {Uhavoc}

(
Inv → [π (preserved & use case)

boolean x = true; �x
if(e1&&e2) {

{ ( if(e1) { if(e2) body } else break; )i }
x = false;

} x	 ω]
(
(x .= TRUE → ϕ[Post(result,TRUE)]) ∧
(x .= FALSE → (Inv ∧ ϕ[Post(result,FALSE)]))

))
, ∆

Γ ` {U}[π while(e1&&e2) body ω](ϕ[Post(result,TRUE)]), ∆
i ≥ 1

Fig. 9: Special “Unrolling” Loop Scope Invariant Rule for Abstract Execution,
Harmonizing Iteration Structure for a Compound Loop Condition

and term transformers (both allow to inline small portions of Java code) and a
new loop construct for realizing the “· · · ” in rules like nonVoidLoopAERule.
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Fig. 10: Performance: Numbers of nodes and APSs and auto mode time
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Listing 6: Remove Control Flag,
Original

while (!done && i < threshold) {

if (condition) {
abstract_statement Body;
done = true;

}

i++;

}

Listing 7: Remove Control Flag,
After Unrolling

while (!done && i < threshold) {
if (!done) {

if (i < threshold) {
if (condition) {

abstract_statement Body;
done = true;

}
}
i++;

} else break;
if (!done) {

if (i < threshold) {
if (condition) {

abstract_statement Body;
done = true;

}
}
i++;

} else break;
}

Listing 8: Before
abstract_statement Guard;
if (guard) {

abstract_statement Then;
} else {

abstract_statement Else;
}

abstract_statement Post;
return result;

Listing 9: After
guard = mGuard(result);
if (guard) {

tmp = mThen(result, guard, tmp);
} else {

tmp = mElse(result, guard, tmp);
}

abstract_statement Post;
return result;

//...

//@ declares final(args);
private Object mThen(Object result,

boolean guard, Object tmp) {
abstract_statement Then;
return tmp;

}

Fig. 12: The Decompose Conditional Refactoring Technique
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Listing 10: Before
abstract_statement P;
abstract_statement Q;
abstract_statement R;
return result;

Listing 11: After
abstract_statement P;
tmp = extracted(res, tmp);
abstract_statement R;
return result;

// ...

//@ declares final(locals(P)), final(args);
public Object extracted(Object res,

Object tmp) {
abstract_statement Q;
return tmp;

}

Fig. 13: The Extract Method Refactoring Technique

Listing 12: Before
result = called();

abstract_statement B;

return result;

// ...

//@ declares final(args);
public Object called() {

abstract_statement C;
abstract_statement A;
return result;

}

Listing 13: After
result = called();

abstract_statement A;
abstract_statement B;

return result;

// ...

//@ declares final(args);
public Object called() {

abstract_statement C;
return result;

}

Fig. 14: The Move Statements to Callers Refactoring Technique

Listing 14: Before
abstract_statement Init;

try {
//@ exceptional_behavior
//@ requires throwsExc;
abstract_statement Normal;

} catch (Throwable t) {
abstract_statement Rollback;
abstract_statement Exceptional;

}

abstract_statement After;
return result;

Listing 15: After
abstract_statement Init;

if (!throwsExc) {
//@ exceptional_behavior
//@ requires throwsExc;
abstract_statement Normal;

} else {
abstract_statement Rollback;
abstract_statement Exceptional;

}

abstract_statement After;
return result;

Fig. 15: The Replace Exception With Test Refactoring Technique
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Listing 16: Before
abstract_statement A;
abstract_statement B;
abstract_statement C;
abstract_statement D;
abstract_statement E;

Listing 17: After
abstract_statement A;
abstract_statement D;
abstract_statement C;
abstract_statement B;
abstract_statement E;

Fig. 16: The Slide Statements Refactoring Technique

Listing 18: Before
abstract_statement PreProc;

abstract_statement InitA;
abstract_statement InitB;

for (int i=0;
i < loopArgs.length; i++) {

o = loopArgs[i];
//@ assignable outA;
abstract_statement LoopBodyA;
//@ assignable outB;
abstract_statement LoopBodyB;

}

//@ assignable result;
//@ accessible outA;
abstract_statement PostProcA;
//@ assignable result;
//@ accessible outB;
abstract_statement PostProcB;

abstract_statement PostProc;
return result;

Listing 19: After
abstract_statement PreProc;

abstract_statement InitA;
for (int i=0;

i < loopArgs.length; i++) {
o = loopArgs[i];
//@ assignable outB;
abstract_statement LoopBodyB;

}
//@ assignable result;
//@ accessible outA;
abstract_statement PostProcA;

abstract_statement InitB;
for (int i=0;

i < loopArgs.length; i++) {
o = loopArgs[i];
//@ assignable outB;
abstract_statement LoopBodyB;

}
//@ assignable result;
//@ accessible outB;
abstract_statement PostProcB;

abstract_statement PostProc;
return result;

Fig. 17: The Split Loop Refactoring


	Abstract Execution

