
The Trace Modality I

Appendix

We provide additional information and explanations that had to be left out of the
paper for space reasons. Numbered (sub-)sections relate to those of the paper.

1 Introduction

Remark. A striking example for the difficulty of knowledge transfer in formal
methods is the sparse interaction between the deductive verification and the
abstract interpretation community, given the significant methodological overlap.

Remark. One can view approximation as a special case of abstraction. Since
approximation can be expressed by a subset relation alone, it is unnatural to
conflate them, however.

2 Programs, Logic, Traces and Abstractions

For completeness, we subsequently define a trace semantics for a simple deter-
ministic while language. In Sect. 2, only the semantics for the more exotic cases
of the assert and assume statements was defined. In the following definition, x
represents program variables and e expressions. We write [[e]]s for the semantics
of expression e in a state s. For appending a trace τ2 to a (finite) trace τ1, we
simply write τ1τ2. The empty trace ε is the neutral element of this operation.
The predicate failed(τ) holds for a trace τ if it contains the failure state ⊥.

Trs(x=e) := {s[x 7→ [[e]]s]}

Trs(if(e) p1 else p2) :=
{

Trs(p1) if [[e]]s = true
Trs(p2) otherwise

Trs(p1 ; p2) := {τ ∈ Trs(p1) : ¬finite(τ) ∧ ¬failed(τ)}∪
{τ1τ2 : τ1 ∈ Trs(p1) ∧ finite(τ1) ∧ ¬failed(τ1),

τ2 ∈ Trlast(τ1)(p2)
}
∪

{⊥ : τ1 ∈ Trs(p1) ∧ failed(τ1)}

Trs(while(e) p) :=
{

Trs(p; while(e) p) if [[e]]s = true
{ε} otherwise

Trs(assert(ϕ)) :=
{
{s} if s |= ϕ

{⊥} otherwise

Trs(assume(ϕ)) :=
{
{s} if s |= ϕ

∅ otherwise
Trs(havoc) := S

Example 4 (Trace Semantics). The L-Program p = x=-1; assume(x ≥ 0) eval-
uates to the empty trace set (Tr(p) = ∅) because of the definition of the se-
mantics for the sequencing operator. There is no τ2 ∈ Trs(assume(x ≥ 0)) since
Trs[x 7→−1](assume(x ≥ 0)) returns the empty set. Conversely, p′ = Tr(x=-1;

II Dominic Steinhöfel and Reiner Hähnle

assume(x ≤ 0)) evaluates to the set {s[x 7→ −1] : s ∈ S}, since now, the empty
trace is produced for the assume statement, which is the neural element of trace
concatenation. The trace modality formula [p spec] thus holds for any specifi-
cation spec, since the empty set is a subset of any set; this is not the case for p′,
where satisfying the specification would be more meaningful. Consider now the
following program: p′′ = x=-1; assume(y ≥ 0). There, we make an assumption
about a variable y that is not mentioned before. It evaluates to

Tr(p′′) = {s′ : s ∈ S ∧ s′ = s[x 7→ −1] ∧ [[y]]s′ ≥ 0},

i.e. the set of all states that after setting x to −1 satisfy the property of y being
positive. This is the actual use case of assumptions: To assume facts that cannot
be otherwise established locally in the current program context.

The property of assumptions to trivially satisfy any specification if they are
invalid motivated the introduction of the failure state ⊥ for assertions. For the
trace modality, a failed assertion in the implementation should only yield a
provable result if there is also a failed assertion in the specification. The program
q = x=-1; assert(x ≥ 0) (similar to p, but with an assertion instead of an
assumption) evaluates to {⊥}, while the program q′ = x=-1; assert(x ≤ 0)
evaluates to the same trace set as p′. The program q′′ = x=-1; assert(y ≥ 0),
on the other hand, evaluates to

Tr(q′′) = {s′ : s ∈ S ∧ s′ = s[x 7→ −1] ∧ [[y]]s′ ≥ 0} ∪
{⊥ : s ∈ S ∧ s′ = s[x 7→ −1] ∧ ¬[[y]]s′ ≥ 0}

It also contains a set of traces for all concrete traces that after the assignment
satisfy the assertion, but also a trace with the failure state if there is any state
which does not satisfy the assertion. The use case for assertions is, in contrast to
assumptions, to verify a fact that is assumed to be provable locally in the current
program context.

The havoc command is used in loop invariant reasoning (see Example 10).
For instance, r = x=-1; assert(Inv); havoc; assume(Inv) evaluates to

Tr(r) = {s ∈ S : [[Inv]]s} ∪
{⊥ : s ∈ S ∧ s′ = s[x 7→ −1] ∧ ¬[[Inv]]s′} ♦

3 The Trace Modality

Table 1 (page III) provides a quick summary of our formalizations for the con-
sidered verification tasks in Sect. 3.

Remark 1 (Axioms of Modal and Dynamic Logic). The necessitation rule (axiom
N) and distribution axiom (axiom K) of modal logic are theorems of the trace
modality: If ϕ is a theorem, then [p αbig ϕ] holds for all p (that do not produce a
failure ⊥) since liftFml(s)(ϕ) contains all traces starting in s (axiomN). It is also
straightforward to show that [p αbig ϕ → ψ] implies [p αbig ϕ] → [p αbig ψ]

The Trace Modality III

Ta
sk

P
ro
bl
em

D
l

D
r

So
lu
tio

n
Te

ch
ni
qu

es
(e
xc
er
pt
)

Pa
rt
ia
lC

or
re
ct
ne

ss
|=

[p

α

bi
g

P
os

t]
D
L

0
D

F
m

l
Sy

m
bo

lic
ex
ec
ut
io
n,

w
ea
ke
st

pr
ec
on

di
tio

n
re
as
on

in
g,

H
oa
re

ca
lc
ul
us

To
ta
lC

or
re
ct
ne

ss
|=
〈p

α

bi
g

P
os

t〉
D
L

0
D

F
m

l
di
tt
o;

pl
us

re
as
on

in
g
ab

ou
t
va
ria

nt
/
ra
nk

in
g
fu
nc
tio

n

In
fo
rm

at
io
n
Fl
ow

|=
[p

(l
,h

)
α

{
l}
◦α

bi
g

p(
l,

h′
)]

D
L

0
D
L

0
Se

cu
rit

y
ty
pe

sy
st
em

s,
H
oa
re

ca
lc
ul
us
,s

ym
bo

lic
ex
ec
ut
io
n

In
fo
rm

at
io
n
Fl
ow

w
ith

D
ec
la
ss
ifi
ca
tio

n
|=
∧ n i=1

(e
i
(l
,h

)
. =
e i

(l
,h
′)

)→
[p

(l
,h

)
α

{
l}
◦α

bi
g

p(
l,

h′
)]

D
L

0
D
L

0
di
tt
o

Fi
ni
te

Sp
ac
e
M
C

s
|=

[p

ϕ

]
D
L

0
D

T
L

A
ut
om

at
a
co
ns
tr
uc
tio

ns
B
ou

nd
ed

M
C

|=
[p

ϕ

]
D
k L

0
D

T
L

SM
T

so
lv
er
s
fo
r
ch
ec
ki
ng

en
co
de

d
pr
og
ra
m

pa
th
s

A
bs
tr
ac
tio

n-
B
as
ed

M
C

|=
[p

α

d
ϕ

]
D
L

0
D

T
L

O
ve
ra
pp

ro
xi
m
at
io
n
te
ch
ni
qu

es
,C

E
G
A
R

lo
op

s
Sy

m
bo

lic
E
xe
cu
tio

n-
B
as
ed

M
C

|=
[p

ϕ

]
D
L

0
D

T
L

In
va
ria

nt
ge
ne

ra
tio

n,
k
-in

du
ct
io
n

B
ug

Fi
nd

in
g

|=
〈p

¬
ϕ
〉

D
L

0
D

T
L

A
ll
M
C

te
ch
ni
qu

es
;c

an
be

in
te
gr
at
ed

w
ith

al
la

bs
tr
ac
tio

ns

P
ro
gr
am

Sy
nt
he

si
s

|=
[p
′

α

bi
g

p]
D
L

D
L

P
ro
of
-t
he

or
et
ic

sy
nt
he

si
s,

pr
oo

fm
in
in
g

C
or
re
ct

co
m
pi
la
tio

n
|=

[p

α

ob
s◦
α

bi
g

c]
D
L

0
D
L

Si
m
ul
ta
ne

ou
s
sy
m
bo

lic
ex
ec
ut
io
n,

co
m
pi
le
r
ex
tr
ac
tio

n
fr
om

ex
ec
ut
ab

le
H
O
L
sp
ec
ifi
ca
tio

ns

P
ro
gr
am

ev
ol
ut
io
n
/

B
ug

fix
in
g

|=
[p

bu
gg

y

α

pa
tc

h
◦α

bi
g

p fi
xe

d
]

D
L

0
D
L

0
M
an

ua
lp

ro
gr
am

re
fin

em
en
t,

au
to
m
at
ic

so
ftw

ar
e
re
pa

ir

Ta
bl
e
1:

M
od

el
in
g
D
iff
er
en
t
Ve

rifi
ca
tio

n
Ta

sk
s
w
ith

th
e
Tr

ac
e
M
od

al
ity

IV Dominic Steinhöfel and Reiner Hähnle

(axiom K). As an example for an axiom of PDL [17], we consider the axiom
for a PDL “test” ψ?, where ψ? corresponds to our assume ψ: The assertion
[assume ψ αbig ϕ] is equivalent to ψ → ϕ. If ψ does not hold for a state s, the
trace set for the assume statement is the empty set which is trivially contained
in any set, and the premise ψ of the implication is false and the implication
therefore holds. If, however, s does satisfy ψ, then the abstracted trace set for
the assume contains the trace starting and ending in s which is only contained in
the set for the specification if s also satisfies ϕ, and similar for the implication.

Remark 2 (Linearization). As a small exercise, we can prove a theorem corre-
sponding to the “linearization” axiom [p;q]ϕ↔ [p][q]ϕ also for the trace modal-
ity. The trace modality version of this axiom is

[p;q αbig ϕ]↔ [p αbig [q αbig ϕ]] (1)

To give this a meaning, we define a lifting function liftDmod
assigning trace sets

to trace modality formulas as follows:

liftDmod
(s)([Cl α Cr]) :={

sτ1 : finite(τ1) ∧ ∃τ2 ∈ liftDl
(last(sτ1))(Cl); α(sτ1τ2) ⊆ α(liftDr

(s)(Cr))
}

∪
{
sτ : ¬finite(τ) ∧ α(sτ) ⊆ α(liftDr

(s)(Cr))
}

In other words, the set of (i) all finite prefixes τ1 starting in s which can completed
by the traces τ2 for the implementation starting in the last state of τ1 such that
the result meets the specification after α-abstraction, and (ii) all infinite traces
starting in s which meet the specification after α-abstraction. Part (ii) may
seem strange since the implementation Cl does not occur there. The idea is that
for a nonterminating program p in Eq. (1), q is never evaluated neither on the
left nor on the right-hand side of the equality. If ϕ is a first-order post condition,
it will in any case only be lifted to finite traces, which is why (ii) does not apply
then. We prove the “→” direction of Eq. (1). For simplicity, we assume that p,
q terminate normally for all inputs. Our hypothesis is that for all states s, the
set αbig({τ1τ2}), where τ1 corresponds to an execution of p starting in s and τ2
to an execution of q starting in the final state of τ1, is contained in the set of
all pairs (s, f) where f satisfies ϕ. We have to show that the αbig({τ1}), where
τ1 is as before, is contained in the set of all pairs (s, f ′), where f ′ is the final
state of a prefix trace that can be completed by execution of q to a trace the
final state of which satisfies ϕ. Since from the hypothesis, we already know that
when execution q after p, the final state satisfies ϕ, f ′ can be instantiated to a
final state of τ1. Direction “→” is similar.

We point out that the trace lifting of trace modality formulas in Remark 2 is
interesting in its own, since it closely resembles the definition of the semantics
of PDL modality formulas in [17]. There, the semantics of [p]ϕ is the set of
all states s for which, when executing p starting in s, the final states satisfy
ϕ. Our definition is similar, only that we generalize from single initial states to

The Trace Modality V

whole “prefix traces”. Another consideration is that we could have regarded trace
modality formulas (in the specification side of a trace modality formula) simply
as an atom of first-order logic. Then, liftDFml

(s)([q αbig ϕ]) is the set of all finite
traces starting in s whose final states satisfy [q αbig ϕ], which is equivalent to
the first part of the union in Remark 2–only infinite traces are not considered.

3.1 Functional Verification

Remark 3. Termination only is expressed as 〈p αbig true〉: There has to be
a αbig-abstracted trace for p starting in s which is not contained in the set
αbig(liftFml(s)(true)) consisting of all infinite traces starting in s (and all traces
not starting in s).

3.2 Information Flow Analysis

Remark 4. In Example 2, we could have omitted αbig; however, we cannot do
so in general, if we want to allow intermediate violation of the policy. If we, for
instance, added a statement l=42; to the program, it would be safe w.r.t. the
big-step formalization, although in between, l attains a different value according
to the value of h.

Declassification, such as delimited information release [28], can be easily en-
coded via preconditions. Assume e is an expression of L0 we want to declassify.
We extend L0 by expressions declassify(e), as in [28], which evaluate to e
while permitting flow of e to the low level. As for programs, write e(l, h) to
make the variables occurring in e explicit. Then non-interference with declassi-
fication is formalized as:

|= e(l, h) .= e(l, h′)→ [p(l, h) α{l}◦αbig p(l, h′)] .

Example 5 (Declassification). We consider the classic PIN example, where a low
variable OK is set to true depending on whether a high input inp equals a high
variable pin containing a PIN. Let

p := if (declassify(pin==inp)) { OK=true } else { OK=false }

be this program. If we do not give special semantics to the declassify expres-
sion, there is a state s where s(pin) = s(inp), but s(pin′) 6= s(inp′); for this
state, the subset relation does not hold, which is why p would be classified as
insecure. The additional precondition pin .= inp↔ pin′ .= inp′, however, rules
this choice out, and we can classify the program as secure w.r.t. the delimited
release semantics. ♦

3.3 Software Model Checking
In the following, we formalize four popular Software Model Checking approaches
using the trace modality.

VI Dominic Steinhöfel and Reiner Hähnle

Finite Space MC Finite space model checkers (SPIN [20] is a prominent rep-
resentative) exhaustively explore the state space of an abstract program
model. This implies that the analysis starts from a concrete input state s
and that no unbounded data structures are involved. We can formalize this
problem as s |= [p ϕ], where ϕ is an LTL formula.

Bounded MC (BMC) BMC [6,8] handles unbounded data structures, but re-
stricts the search space according to a predefined upper bound on the number
of loop executions. This problem can simply be expressed as |= [p ϕ] when
using a domain Dk

L0
with lifting function liftkL0

that only produces traces up
to a fixed number k of loop executions (and recursive method calls).

Abstraction-Based MC This variant of SMC applies data abstraction to limit
the search space. We can express it as |= [p αd

ϕ], where αd is an abstract
interpretation of the data types of p.

Symbolic Execution-Based MC This variant of SMC is similar to functional
verification (Sect. 3.1). They mainly differ in the used abstraction (identity
vs. big-step) and that in MC less complex properties are proved: |= [p ϕ].

3.4 Program Synthesis
Example 6 discusses our formalization of the program synthesis problem within
the trace modality along an example from the literature computing integer
square roots.

Example 6. We consider the square root example from [30]. Given a user-defined
specification Pre := x ≥ 1, Post := i2 ≤ x < (i + 1)2 and scaffold program
•; ∗ (•);•, the synthesizer should generate a program IntSqrt(int x) satisfy-
ing the specification (i.e., computing the integer square root of a strictly positive
variable x) and matching the structure of the scaffold. An additional user-defined
constraint is that, apart from x and i, there must be at most one additional
variable v, also of integer type. Listing 1 shows a concrete program matching
the specification. To apply our formalization, we first translate the scaffold in a
schematic L-Program: P;while(b){Q};R. Let now SynP/Q/R be synthesis condi-
tions for P, Q and R inferred by the synthesizer. Note that SynQ is an inductive
invariant for Q. A concrete instantiation for SynQ is v .= i2∧x ≥ (i−1)2∧i ≥ 1.
The scaffold annotated by assert statements for the synthesis conditions is de-
picted in Listing 2 (we write x′ for the value of x before the execution of a
schematic statement). Suppose that now we refine the scaffold sc to a program
p by replacing Q and the following assert statement by the following program q:
v=v+2i+1;i++;. To prove this correct, we have to show |= i ≥ 1→ [p αbig sc].
Since the traces for sc include one trace for each possible instantiation of Q sat-
isfying SynQ in the given context, and q also satisfies SynQ in this context, this is
true. We point out that we cannot instead show Pre → [q αbig SynQ], since the
program before the insertion position, i.e. already substituted concrete programs
as well as asserted synthesis conditions, also has to be considered. Here, in par-
ticular, it is important that v and i initially are 1 for the invariant to hold. ♦

The Trace Modality VII

v = 1; i = 1;

while (v<=x) {
v = v+2i+1;
i++;

}
i = i-1;

Listing 1: IntSqrt

P;
assert(v .= 1 ∧ i .= 1 ∧ x .= x′);
while (v<=x) {

Q;
assert(v .= i2 ∧ x ≥ (i− 1)2 ∧ i ≥ 1);

}
R;
assert(i2 ≤ x < (i + 1)2);

Listing 2: Annotated scaffold for IntSqrt

3.5 Correct Compilation

Remark 5. A popular approach realizing correct compilation is the specification
of the compiler within the executable fragment of an interactive proof assistant
like Isabelle or Coq, as done in CompCert [23]. We proposed in earlier work a
rule-based technique using simultaneous Symbolic Execution [31] with a dual
modality, which can be seen as a specialization of the trace modality. The in-
teresting property of this framework is that compilation rules can be proven
automatically based on Symbolic Execution calculi for the source and target
language. We think that a similar technique might be applicable to different
verification tasks.

3.6 Program Evolution & Bug Fixing
There are (at least) four formalizations of the problem of program evolution /
but fixing, of which two variants (“bug abstractions” and “patch abstractions”)
already have been presented in Sect. 3.6. Alternatives are:
– Like in declassification (Sect. 3.2), an added precondition Presafe excludes

buggy traces: |= Presafe → [pbug αbig pfixed].
– One could prove the buggy and fixed program in isolation (as in functional

correctness, Sect. 3.1); then, though, one cannot use techniques of relational
program verification to exploit similarities between the two program versions.
Also, the existence of full separate functional specifications is required.
The following example demonstrates the application of the formalizations

using additional preconditions, “bug abstractions” and “patch abstractions”.

Example 7. We explain the mentioned techniques along a simple example. The
program pbuggy := if (x<-1) {x=-x;} should compute the absolute of a given
integer x; i.e., after execution of the program, x should be positive. However, the
program contains a bug: The programmer misspelled the “<” operator which
should be a “<=” instead. For the input −1, a wrong result is thus produced. Let
pfixed be the corrected program. We choose Presafe := x 6= −1, which excludes
the buggy path. Then, |= Presafe → [pbuggy αbig pfixed] can be proven, since
apart from that path, the traces of the programs coincide. Note that Presafe
is in fact the negation of the path condition for the buggy path. Choosing the

VIII Dominic Steinhöfel and Reiner Hähnle

second formalization, we can define αbug(T) := {τ ∈ T |first(τ) |= Presafe} and
show |= [pbuggy αbug◦αbig pfixed], which is in this case equivalent. Indeed, the
latter formalization is more flexible than the former and allows for a more sys-
tematic approach which not simply excluding buggy paths, but rather encoding
the correction as a “patch”. Let αpatch(T) := {patch(τ)|τ ∈ T }, where

patch(τ) :=
{

(first(τ), last(τ)[x 7→ −first(τ)(x)]) if first(τ)(x) = −1
τ otherwise ♦

As demonstrated by the example, the abstraction approach makes program
evolution more explicit by describing the applied patch. Also, just excluding the
buggy path would be too easy, since apart from that path, the buggy program
is likely to be equivalent to the original one—we could show the correctness of a
“fixed” program where no fix was applied at all, or the fix introduced new wrong
behavior for the buggy path. We therefore choose the “patch abstraction” as the
canonical representation for program evolution within the trace modality.

4 Reasoning about the Trace Modality

Example 8. Let, as in Example 3, s1 = (x := 17 || y := 42 || z := 2, true). It is
subsumed by s3 = (stoP ◦ x := c, CP ∧ c ≥ 0) containing an abstract store and
path condition: We can prove
|= {x := 17}P (x)→ subst({x := 17}(CP ∧ 17 ≥ 0) ∧ {stoP ◦ x := 17}P (x))

for any subst replacing CP with true and stoP with any concrete store. Subsump-
tion cannot be shown, for instance, for s4 = (x := 17 || w := c′, c′ ≥ 0), since
(SUB1) is violated. The symbolic state s5 = (x ≤ 0) does not subsume s1, since
the first conjunct under subst in (SUB2), {x := 17}x ≤ 0, does not hold. ♦

Our algorith for the creation of SFAs from symbolic traces is shown in Algo. 2.
For an alphabet Σ, write Σε for its extension by instantaneous ε-transitions. We
use standard ε-elimination to convert an SFA on Σε to Σ. During SFA construc-
tion, we maintain a map L for assertion labels, mapping states to assertions
that should hold when arriving at them. Labels are, in the post processing step
addAssertionEdges, transformed to assertion edges leading to a failure state
for input states not satisfying them.

Algos. 3 and 4 show the auxiliary algorithms for Algo. 1 computing over-
approximating initial simulation relations and checking two symbolic states for
subsumption. The algorithms are explained in Sect. 4.

The approach of deriving SSRs from starting from the cross product by
repeated filtering is polynomial in the size of the automata; we refer to [26] for
more efficient approaches.

Symbolic Lifting of Loops Our symbolic trace language is a regular language,
therefore it generally is not possible to encode loops with full precision. For this,
it would be necessary to maintain a mutable state for tracking changes made

The Trace Modality IX

Algorithm 2 Creation of SFA from Symbolic Traces
function createSFA(τ : SymTr)

q0 ← fresh state, Σ ← S
(L, (Q,Σε, δ, q0, F))← extendSFA(τ, q0, {q0}, Σε, q0)
(L′, (Q′, Σ, δ′, q0, F

′))← eliminateEpsilonTransitions(L, (Q,Σε, δ, q0, F))
. Standard, but preserve labels

return addAssertionEdges(L′, (Q′, Σ, δ′, q0, F
′))

end function

Ensure: Returns a pair (L, (Q′, Σε, δ, q0, F)) of a set of labels and an SFA for τ , where
L ⊆ Q′×Fml, Q′ ⊇ Q, δ ⊆ Q′×SymState×Q′, F ⊆ Q′. Σε and q0 are not changed.
function extendSFA(τ , q, Q, Σε, q0)

if τ = s then
q′ ← fresh state, q′ /∈ Q
Q′ ← Q ∪ {q′}
δ ← {(q, s, q′)}
F ← {q′}
return (L, (Q′, Σε, δ, q0, F))

else if τ = τ1; τ2 then
(L1, (Q1, Σε, δ1, q0, F1))← extendSFA(τ1, q, Q, Σε, q0)
Q′ ← Q1, δ ← δ1, F ← ∅, L← L1
for all q′ ∈ F1 do

(L2, (Q2, Σε, δ2, q0, F2))← extendSFA(τ2, q′, Q′, Σε, q0)
Q′ ← Q′ ∪Q2, δ ← δ ∪ δ2, F ← F ∪ F2, L← L ∪ L2

end for
return (L, (Q′, Σε, δ, q0, F))

else if τ = τ1 + τ2 then
(Li, (Qi, Σε, δi, q0, Fi))← extendSFA(τi, q, Q, Σε, q0), i = 1, 2
return (L1 ∪ L2, (Q1 ∪Q2, Σε, δ1 ∪ δ2, q0, F1 ∪ F2))

else if τ = ϕ! then
return (L ∪ {(q, ϕ)}, (Q,Σε, ∅, q0, ∅))

else if τ = (τ ′)∗ then
(L, (Q′, Σε, δ, q0, F))← extendSFA(τ ′, q, Q, Σε, q0)
δ′ ← δ ∪ {(q′, ε, q) : q′ ∈ F}
return (L, (Q′, Σε, δ′, q0, F ∪ {q}))

end if
end function

function addAssertionEdges(L, (Q,Σ, δ, q0, F))
qfail ← fresh state, δ′ ← δ
for all (q, ϕ) ∈ L do

for all (q′, (sto, ϕ′), q) ∈ δ do . similarly for ϕ′-only transitions
δ′ ← δ′ \ {(q′, (sto, ϕ′), q)}
s← (sto, ϕ′ ∧ ϕ)
δ′ ← δ′ ∪ {(q′, s, q), (q′,¬ϕ, qfail)}

end for
end for
return (Q ∪ {qfail}, Σ, δ′, q0, F ∪ {qfail})

end function

X Dominic Steinhöfel and Reiner Hähnle

Algorithm 3 Construction of Initial Simulation Relation
function initSim(Ql, Qr, δl, δr)

R← Ql ×Qr, changed ← true
while changed = true do

changed ← false
for all (ql, qr) ∈ R, (ql, s, q′l) ∈ δl do

if ¬∃(qr, s′, q′r) ∈ δr then R← R \ (ql, qr), changed ← true end if
end for

end while
return R

end function

Algorithm 4 Subsumption Checking
function subsumption(s, s′, substs)

substs′ ← ∅
for all subst ∈ substs do

substs′ ← substs′ ∪ {subst ◦ subst′ | subst′ such that s vsubst′ subst(s′)}
end for
return substs′

end function

inside the loop body, which then could be evaluated to decide whether to con-
tinue or leave the loop. Basically, we can within our framework apply the same
solutions as known from symbolic execution: (Bounded) loop unwinding and in-
variant reasoning. The simplest solution is loop unwinding, by which symbolic
lifting can be defined as follows:

sliftL0(sto, ϕ)(while(b) p) := sliftL0(sto, ϕ)(if(b) p ; while(b) p)
This, however, does generally not terminate for loops with symbolic guards. In
the context of BMC, the bounded lifting function sliftkL0

would unwind the loop
as above exactly k times and then remove the loop statement. A standard ap-
proach in deductive program verification is to use loop invariants. Let Inv ∈ Fml.
Then, we can replace a loop while(b) p by the following program:

assert Inv; havoc; assume Inv; if (b) { p; assert Inv }

The havoc statement erases the state: sliftL0(sto, ϕ)(havoc) := true. The re-
placement as above is sound for the left side of the trace modality: If Inv is not
an invariant, the program evaluates to a failure trace, which can only be part of
the traces for the right side if there also occurs a failed assertion. Otherwise, the
new program evaluates to at least the same traces as the old one. It would also
be sound terminate the trace after the assertion in the if, either by an exit
statement or by wrapping the remaining program in an else block.

Reasoning with Symbolic Traces In the following, we provide two examples (Ex-
amples 9 and 10) to establish an intuition about how to solve the problem of
symbolic trace subsumption. This is meant to support understanding the prin-

The Trace Modality XI

ciples behind Algo. 1, although the algorithm itself is not directly used there.
Example 11 after that applies Algo. 1 to the problem of Example 9.

For the subsequent example, we assume that our term language has a condi-
tional operator ϕ ? t1 : t2, intuitively evaluating to the value of t1 if ϕ holds and
otherwise to that of t2.

Example 9 (Functional Verification). Consider the following program p com-
puting the difference of two integers a and b:

“res=0; if (b < a) { tmp=a; a=b; b=tmp; } res=b-a”
For this program, we want to show the post condition ϕ := res ≥ 0, i.e.,
|= [p αbig ϕ]. We first compute the symbolic traces by symbolic lifting, starting
from an initial store st0 := a := a0 || b := b0 || res := res0 || tmp := tmp0:

sliftL0(st0, true)(p) =

(st0 ◦ (res := 0), true);(
((st0 ◦ (res := 0), b0 < a0);

(st0 ◦ (res := 0 || tmp := a), b0 < a0);

(b := b0 || res := 0 || tmp := a0 || a := b0 , b0 < a0);

(res := 0 || tmp := a0 || a := b0 || b := a0 , b0 < a0);

(tmp := a0 || a := b0 || b := a0 || res := a0 − b0 , b0 < a0))

+ ((st0 ◦ (res := 0), b0 ≥ a0);

(a := a0 || b := b0 || tmp := tmp0 || res := b0 − a0 , b0 ≥ a0))
)

During symbolic lifting, we simultaneously simplified the symbolic state, e.g.,
the update st0 ◦ (res := 0 || tmp := a) ◦ (a := b) is simplified to b := b0 || res :=
0 || tmp := a0 || a := b0. Note that alternatively, one could use state merging to
create an equivalent trace with only one final state:

sliftL0(st0, true)(p) = (st0 ◦ (res := 0), true);(
((st0 ◦ (res := 0), b0 < a0);
(st0 ◦ (res := 0 || tmp := a0), b0 < a0);
(st0 ◦ (res := 0 || tmp := a0 || a := b0), b0 < a0);
(res := 0 || tmp := a0 || a := b0 || b := a0, b0 < a0))

+ (st0 ◦ (res := 0), b0 ≥ a0)
)
;

(tmp := (b0 < a0) ? a0 : tmp0 ||
a := (b0 < a0) ? b0 : a0 ||
b := (b0 < a0) ? a0 : b0 ||

XII Dominic Steinhöfel and Reiner Hähnle

res := (b0 < a0) ? a0 − b0 : b0 − a0, true)

Thus, it is always possible (for deterministic programs) to create symbolic traces
with exactly one final state. Symbolically lifting the post condition leads to
sliftFml(st0, true)(ϕ) = true∗; (res ≥ 0). Applying big step abstraction, we have
to show that the symbolic trace res ≥ 0 subsumes both traces (tmp := a0 || a :=
b0 || b := a0 || res := a0 − b0, b0 < a0) and (res := b0 − a0, b0 ≥ a0). We can do
so by evaluating the following formula in a theorem prover or SMT solver:

(b0 < a0 → {tmp := a0 || a := b0 || b := a0 || res := a0 − b0}res ≥ 0) ∧
(b0 ≥ a0 → {res := b0 − a0}res ≥ 0)

which is equivalent to (b0 < a0 → a0 − b0 ≥ 0) ∧ (b0 ≥ a0 → b0 − a0 ≥ 0) and
therefore valid, which is why |= [p αbig ϕ] also holds. In this example, we also
could have shown the assertion�ϕ, i.e. that the trace sliftTR(st0, true)(�ϕ) = ϕ∗

subsumes the symbolic trace of p, since ϕ holds for all intermediate states. ♦

The above example demonstrated how to match symbolic traces for a pro-
gram and a post condition after big step abstraction. In the following, we inves-
tigate the situation for two programs in a program synthesis setting.

Example 10 (Synthesis). Consider IntSqrt and its scaffold for synthesis from
Listings 1 and 2. We aim to show that the program p is a specialization of
the scaffold sc, i.e., that |= [p sc]. Since we already have an invariant at
hand, we can use invariant reasoning to handle loops. Before, we mentioned that
this is generally unsound for the right-hand side of the trace modality, since it
constitutes an abstraction. However, we apply the same abstraction on the left
and right-hand side, which is why this technique is admissible. Additionally, one
has to check that the invariant is not unsatisfiable, since otherwise, both sides
evaluate to the failure state and the property can be shown trivially. Let st0 =
(x := x0 || v := v0 || i := i0) be an initial store. The invariant is Inv(v, i, x) :=
v = i2 ∧ x ≥ (i− 1)2 ∧ i ≥ 1. We obtain the following symbolic traces (to ease
the presentation, we omit abstract path conditions for schematic statements):

sliftL(st0, x0 ≥ 1)(p) =

(st0 ◦ (v := 1), x0 ≥ 1);

(x := x0 || v := 1 || i := 1 , x0 ≥ 1);

(x0 ≥ 1→ 1 = 12 ∧ x0 ≥ (1− 1)2 ∧ 1 ≥ 1)!;

(x := x1 || v := v1 || i := i1 , x0 ≥ 1);

(x := x1 || v := v1 || i := i1, x0 ≥ 1 ∧ Inv(v1, i1, x1));(
((x := x1 || v := v1 || i := i1, Inv(v1, i1, x1) ∧ v1 ≤ x1);

(x := x1 || i := i1 || v := v1 + 2i1 + 1 , Inv(v1, i1, x1) ∧ v1 ≤ x1);

The Trace Modality XIII

(x := x1 || v := v1 + 2i1 + 1 || i := i1 + 1 , Inv(v1, i1, x1) ∧ v1 ≤ x1);

((Inv(v1, i1, x1) ∧ v1 ≤ x1)→ Inv(v1 + 2i1 + 1, i1 + 1, x1))!) +

((x := x1 || v := v1 || i := i1, Inv(v1, i1, x1) ∧ v1 > x1);

(x := x1 || v := v1 || i := i1 − 1 , Inv(v1, i1, x1) ∧ v1 > x1))
)

sliftL(st0, x0 ≥ 1)(sc) =

true∗ ; (st0 ◦ stoP , x0 ≥ 1);

(x0 ≥ 1→ {st0 ◦ stoP}(v
.= 1 ∧ i .= 1 ∧ x .= 1))!;

(x0 ≥ 1→ {st0 ◦ stoP}Inv(v, i, x))!;

(x := x1 || v := v1 || i := i1 , x0 ≥ 1);

(x := x1 || v := v1 || i := i1, x0 ≥ 1 ∧ Inv(v1, i1, x1));(
((x := x1 || v := v1 || i := i1, Inv(v1, i1, x1) ∧ v1 ≤ x1);

true∗; ((x := x1 || v := v1 || i := i1) ◦ stoQ , Inv(v1, i1, x1) ∧ v1 ≤ x1);

((Inv(v1, i1, x1) ∧ v1 ≤ x1)→
{(x := x1 || v := v1 || i := i1) ◦ stoQ}Inv(v, i, x))!;

((Inv(v1, i1, x1) ∧ v1 ≤ x1)→

{(x := x1 || v := v1 || i := i1) ◦ stoQ}Inv(v, i, x))!) +

((x := x1 || v := v1 || i := i1, Inv(v1, i1, x1) ∧ v1 > x1);

true∗;

((x := x1 || v := v1 || i := i1) ◦ stoR , Inv(v1, i1, x1) ∧ v1 > x1);

(((Inv(v1, i1, x1) ∧ v1 > x1)→

{(x := x1 || v := v1 || i := i1) ◦ stoR}(i2 ≤ x < (i + 1)2))!)
)

We point out that we performed the same anonymization x := x1 || v := v1 || i :=
i1 for the havoc statement in both traces; this corresponds to explicit loop cou-
pling. Alternatively, we could have left the job of finding suitable substitutions to
the subsumption checker. Now, we have to decide whether (sliftL(st0, x0 ≥ 1)(p)
is subsumed by sliftL(st0, x0 ≥ 1)(sc)). We do not explicitly construct SFAs for
this example, but follow the symbolic trace of p, mapping it to that of sc in a
“lock-step” approach. This corresponds to an “on-the-fly” simulation construc-
tion process.

The state (st0 ◦ (v := 1), x0 ≥ 1), for instance, is subsumed by true∗, and the
state (x := x0 || v := 1 || i := 1, x0 ≥ 1) by (st0 ◦ stoP, x0 ≥ 1), since stoP is yet
uninstantiated and can therefore be instantiated to v := 1 || i := 1. Next are the

XIV Dominic Steinhöfel and Reiner Hähnle

assertions before the loop: Since based on the instantiation of stoP all of those
are satisfied, the failure trace is neither in the left, nor in the right trace set,
which is why we can continue. This way, we process the whole symbolic trace
and finally find a simulation relation. ♦

Example 11 (Applying Algo. 1). We consider the example from Example 9.
Algo. 1 first lifts the implementation p and specification ϕ to symbolic traces;
this is already done in Example 9 (we consider the version with state merging
for p). Then, it creates SFAs for p and ϕ (Algo. 2). Those automata are shown
in Figs. 2 and 3. Now, we have to find the simulation relation (Algo. 1). The ini-
tial simulation produced by initSim is ({q0, q1, q2, q3, q4, q5}×{q6})∪{(q5, q7)}.
The pair (q3, q7), for instance, is not contained, since there is an outgoing edge
from q3, but not from q7. If the pair (q0, q6) was not contained in the initial
simulation, we could stop here since property (SR2) would not be satisfied. The
subsequent subsumption checking steps performed by findSSR do not eliminate
any pair from this relation, since all symbolic states in the implementation are
subsumed by true in the specification, and the state on the transition from q3
to q5 satisfies the post condition res ≥ 0. The algorithm has found a relation
also satisfying (SR2) and returns YES. If, however, the program would set res
simply to, say, −1 in a last step, then the symbolic state in the last transition,
(res := −1, true) would not be subsumed by res ≥ 0 and the algorithm would
return UNKNOWN. ♦

The Trace Modality XV

Fig. 2: Implementation SFA for Example 9

Fig. 3: Specification SFA for Example 9

