
A General Lattice Model for
Merging Symbolic Execution Branches ?

Dominic Scheurer, Reiner Hähnle, and Richard Bubel

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
{scheurer, haehnle, bubel}@cs.tu-darmstadt.de

Abstract. Symbolic execution is a software analysis technique that has
been used with success in the past years in program testing and verifi-
cation. A main bottleneck of symbolic execution is the path explosion
problem: the number of paths in a symbolic execution tree is exponen-
tial in the number of static branches of the executed program. Here we
put forward an abstraction-based framework for state merging in sym-
bolic execution. We show that it subsumes existing approaches and prove
soundness. The method was implemented in the verification system KeY.
Our empirical evaluation shows that reductions in proof size of up to 80%
are possible by state merging when applied to complex verification prob-
lems; new proofs become feasible that were out of reach so far.

1 Introduction

Symbolic execution [7,20] is a classic program analysis technique that was used
with considerable success in the past years, for example, in program testing [8]
and program verification [4]. One of the main bottlenecks of symbolic execution
is the path explosion problem [8]. It stems from the fact that symbolic execu-
tion must explore all symbolic paths of a program to achieve high coverage (in
testing), respectively, soundness (in verification). As a consequence, the num-
ber of paths from the root to the leaves in a symbolic execution tree is usually
exponential in the number of static branches of the executed program.

Various strategies are in use to mitigate path explosion, including subsump-
tion [3,9], method contracts [5] and value summaries [23]. The last two allow one
to perform symbolic execution per method: different symbolic execution paths
are merged into the postcondition of a contract or a value summary (a con-
ditional execution state over guard expressions). Summaries are computed on
the fly and bottom-up, while contracts characterize all possible behaviors and
must at least partially be written by hand. Unfortunately, even the use of rich
contracts (instead of inlining) is insufficient to deal with complex problems [15].

A seemingly obvious technique to alleviate state explosion in symbolic exe-
cution trees consists of merging the states resulting from a symbolic execution

? The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
319-47846-3 5.

http://dx.doi.org/10.1007/978-3-319-47846-3_5
http://dx.doi.org/10.1007/978-3-319-47846-3_5

step that caused a split (e.g., guard evaluation, statements that can throw ex-
ceptions, polymorphic method calls). After all, graph-based data structures are
standard in model checking for the exploration of symbolic state spaces [10], as
well as in other static software analyses. Indeed, several state merging variants
were suggested for symbolic execution [18,21,23], but there are problems:

(1) State merging does not come for free, but creates considerable overhead:
states must be merged, graph data structures are more complex than trees,
path conditions as well as summaries tend to grow fast and must be simpli-
fied. Eager state merging can make things worse [18], therefore, it has to be
carefully controlled. Simplification of intermediate expressions with the help
of automated deduction is indispensable.

(2) All mentioned approaches assume that merged states are identical to corre-
sponding unmerged states, possibly up to the differences encoded in value
summaries. This is insufficient to merge large numbers of different behaviors.

In the present paper we address both issues. Regarding the second, we observe
that instead of encoding merged states precisely into a conditional state, one
might also abstract from the precise value of a variable. This results in a loss of
precision, but reduces complexity. For example, consider symbolic execution of
“ if (b) x=1 else x=2;” in state σ. Precise state merging would result in a state
identical to σ except the value of x is “x 7→ (1, if σ(b) = true) |x 7→ (2, if σ(b) =
false)”. This does not avoid path explosion, it only delays it. Now, assume that
we define an abstract domain A for the possible values of x, where α(x) is the
abstraction of x and A is an upper semilattice t. For example, A might be the
sign lattice {⊥,−, 0,+,>}. Then the merged state can be over-approximated by
the partially abstract state that is identical to σ except x 7→ +. Path explosion
is avoided. We lost precision about the exact value of x, but for many analyses
this is acceptable provided that the abstract lattice is suitably chosen.

Based on the theory of symbolic execution with abstract interpretation [6],
in the present paper we put forward a general lattice-based framework for state
merging in symbolic execution where a family of abstract lattices is defined by
formulas of a program logic. Our framework preserves soundness of verification
and we show that it subsumes earlier approaches to state merging [18,21,23].

Regarding issue (1) above, as a second contribution, we improved automation
by implementing suitable proof macros for KeY as well as an extension of the
Java Modeling Language (JML)1 which allows software engineers to annotate
Java source code with instructions on when to perform state merges.

We implemented the framework in the state-of-art verification system KeY [5],
where contracts are available to mitigate state explosion. Since the latter must
be partially written by hand, state merging is a complementary technique that
promises a high degree of automation. We confirmed the usefulness of our ap-
proach empirically with an extensive evaluation: Results for small to medium
sized programs are, as expected, mixed, because of the overhead of state merg-
ing. The strength of symbolic execution with state merging emerges when applied
to complex verification problems like the TimSort implementation in the Java

1 http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf

http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf

standard library [15], where we observe reductions in proof size of up to 80%.
Additionally, some proofs become feasible that were elusive before.

We continue with Sect. 2, which provides sufficient theoretical background to
make the paper self-contained. Sect. 3 sets up our abstract lattice model. Sect. 4
defines the actual merge rules, states a soundness theorem and briefly mentions
implementation issues. Sect. 5 contains the empirical evaluation, Sect. 6 lessons
learned as well as future work, and Sect. 7 related work plus a brief conclusion.

2 Background

We formalize our theory in the program logic JavaDL [5], but the approach is
easily adaptable to any program logic with an explicit notion of symbolic state.

2.1 Program Logic and Calculus

Our framework is realized in JavaDL, a sorted first-order dynamic logic [19] for
sequential deterministic Java programs. For the sake of presentation, we restrict
ourselves to a simplified JavaDL variant (simple imperative Java programs over
primitive types int, boolean) and only give the essential definitions. The actual
implementation is based on KeY which covers most sequential Java features:
inheritance, dynamic dispatch, reference types, recursive methods, exceptions,
and strings. Not covered are generic types (which are translated away), floating
point types and lambda expressions. We refer the reader to [5] for a full account.

JavaDL extends sorted first-order logic by two modalities to express partial
and total correctness of programs. For space reasons, we restrict ourselves to the
former, the box modality [·]·. Its first argument is a program (more precisely,
an executable sequence of Java statements); the second argument can be any
JavaDL formula, possibly containing further modal operators. Given a program
p and a JavaDL formula ϕ, the informal meaning of the formula [p]ϕ is: if the
program p terminates then the formula ϕ holds in the final state.

The syntax of terms and formulas is standard except for a few extra cases
like modalities, conditional terms/formulas (Ex. 1) as well as updates. The set of
all programs is Prg ; the set of all program variables is denoted by PV. Updates
represent state changes: an elementary update has the form l := t with l ∈ PV
and t a term of a type compatible with l. Informally, an update has the same
meaning as an assignment, where the program variable on the left-hand side is
assigned the value of the right-hand side. Elementary updates are combined to
parallel updates U1 ‖ · · · ‖ Un which represent simultaneous assignments. In
case of a clash where the same variable l is assigned different values in a parallel
update, the syntactically later assignment wins. The set of all updates is Upd,
skip is the “empty update”. Updates U can be applied to terms t, written {U}t,
and formulas ϕ, written {U}ϕ. We give the non-standard cases of the inductive
definitions of terms and formulas:

Definition 1 (Terms). Let ϕ denote a formula, t1, t2 are terms of type T1 and
T2 and U an update, then (i) {U}t1 is a term of type T1 (ii) if (ϕ) then (t1) else (t2)

is a term of type T where T is the least common supertype of T1 and T2. The
set of all terms is denoted by Trm.

Definition 2 (Formulas). Let ϕ,ψ1, ψ2 denote formulas, U an update and p a
program, then each of (i) [p]ϕ, (ii) {U}ϕ and (iii) if (ϕ) then (ψ1) else (ψ2) is a
formula. For open formulas with free variables v we use the notation ϕv to make
their occurrence explicit. The set of all formulas is denoted by Fml.

Example 1. Let i , j be program variables and x, y logic variables, all of sort int.

– The formula ∀x, y;
(
i
.
= x ∧ j

.
= y → { i := j ‖ j := i}(i

.
= y ∧ j

.
= x)

)
uses

a parallel update to exchange the values of i and j.
– The formula i > j → [i=i−j;] i > 0 expresses that if program i=i−j; is

executed in a state where the value of i is greater than the value of j and it
terminates, then in its final state i is positive.

– if (i > j) then (i) else (j) ≥ 0 means that the maximum of i and j is positive.

Formulas are evaluated in first-order structures with a non-empty domain D
and an interpretation function I giving meaning to sort, function and predicate
symbols. To reason about programs, we extend this to Kripke structures K =
(D, I, S, ρ). The values of program variables depend on the current program
state and cannot be evaluated by the static interpretation function I. Instead
they are assigned values by Kripke states σ :PV → D ∈ S. The state transition
function ρ : Prg → (S → 2S) captures the program semantics (here: Java’s
semantics [14]).2

As our programs are deterministic, the value of ρ(p)(σ) (for any program p
and state σ) is either the empty set (p does not terminate when started in state
σ) or a singleton. Formulas and terms are assigned meaning by an evaluation
function val (K,σ, β; ·), parametric in a Kripke structure K, a state σ and a vari-
able assignment β. The evaluation function assigns terms a value in their domain
and formulas one of the truth values tt , ff . Fig. 1 shows some inductive definition
cases. For expressions without free logic variables, we write val (K,σ; ·); for sets

of closed formulas C, we write val (K,σ;C) meaning val
(
K,σ;

∧
ϕ∈C ϕ

)
.

A sequent calculus [12], [5, Ch. 3] is used to prove the validity of JavaDL
formulas. The rules for the first-order logic connectives are standard, those for
programs follow the symbolic execution paradigm. Formulas with programs are
transformed into pure first-order formulas by symbolically executing the pro-
grams in a forward manner and thereby computing the weakest precondition.
Each execution step transforms or eliminates the first statement until the pro-
gram is eliminated. We write ` ϕ if a formula ϕ is provable using the calculus.

2 Our notion of Kripke structure is derived from that commonly used in modal logic
[13] and slightly differs from the one often used in model checking. E.g., we require
no fixed set of initial states, and the labeling function is given implicitly by the
interpretation and Kripke state which is natural for imperative programs. There is
no essential difference, however.

Programs val (K,σ, β; ·) : Prg → (S → 2S) with val (K,σ, β; p) (σ1) = ρ(p)(σ1)

Terms val (K,σ, β; ·) : Trm → D with
val (K,σ, β; (f(t1, . . . tn)) = I(f)(val (K,σ, β; t1) , . . . , val (K,σ, β; tn))

val (K,σ, β; if (ϕ) then (t1) else (t2)) =

{
val (K,σ, β; t1) val (K,σ, β;ϕ) = tt

val (K,σ, β; t2) otherwise

val (K,σ, β; {U}t) = val (K, val (K,σ, β;U) , β; t)

Formulas val (K,σ, β; ·) : Fml→ {tt ,ff } with

val (K,σ, β; [p]ϕ) =

{
val (K,σ′, β;ϕ) val (K,σ, β; p) (σ) = {σ′}
tt otherwise

val (K,σ, β; {U}ϕ) = val (K, val (K,σ, β;U) , β;ϕ)

Updates val (K,σ, β; ·) : Upd → S with

val (K,σ, β; l := t) = σ′ where σ′(x) =

{
σ(x) if x 6= l

val (K,σ, β; t) otherwise

Fig. 1. Excerpt of the definition of val (K,σ, β; ·)

2.2 Symbolic Execution

We explain how the notions and concepts introduced in the standard litera-
ture [7] relate to our logic-based setting. Symbolic Execution (SE) of a program
results in a Symbolic Execution Tree (SET) consisting of SE states, i.e., triples
(U,C, ϕ) with (1) an update U , the symbolic state, capturing the changes made
to program variables in the course of the execution, (2) the path condition C,
a set of closed formulas comprising the decisions leading to this particular SE
path as well as additional preconditions, and (3) the program counter ϕ, a closed
formula, typically containing the remaining program to be executed as well as
the postcondition to prove.

Please note that we generalize the usual notion of a program counter, which
is normally only a pointer to a statement in the executed program. In our set-
ting, a program counter may be an arbitrary closed formula. This generalization
facilitates reasoning about the validity of SE states.

Definition 3 (Validity of SE States). An SE state s = (U,C, ϕ) is called
valid iff for all Kripke structures K and states σ either val (K,σ;C) = ff or
val (K,σ; {U}ϕ) = tt holds. We write valid (s).

Consider an SE state s = (U,C, [p]ϕ). Intuitively, if the path condition C
does not hold in s, then the state is unreachable and trivially valid. Otherwise,
all final state(s) reached when executing p in state val (K,σ;U) must satisfy ϕ.

SET transitions are constrained by a rule-based SE transition relation δ :
2SEStates → 2SEStates , where SEStates is the set of all SE states. Again, this is
a generalization of traditional SE, since the result of applying δ does not have
to be a singleton. Based on Defn. 3, we introduce a soundness notion for δ.

Definition 4 (Soundness of Symbolic Execution). An SE transition re-
lation δ : 2SEStates → 2SEStates is called sound iff for each input-output pair
(I,O) ∈ δ it is the case that

∧
o∈O valid (o) =⇒ ∧

i∈I valid (i) .

The intuition behind the above definition is that, whenever one input state
is not valid, also at least one output state must not be valid. Otherwise, it would
be possible to derive an invalid property about a program.

2.3 Running Example

Listing 1. Distance of two positive integers

1 public int dist(int x, int y) {
2 if (y < x) {
3 int tmp = x;
4 x = y;
5 y = tmp;
6 } else {}
7 return y − x;
8 }

The program in Listing 1 is our
running example. It computes the
absolute difference (distance) be-
tween two positive numbers. Aim-
ing to prove that the result is never
negative, we start with the SE state
below as initial SE state (the return
value is assigned to the global pro-
gram variable “result”):

(

U︷︸︸︷
skip ,

C︷ ︸︸ ︷
{x > 0, y > 0},

ϕ︷ ︸︸ ︷
[if (y<x) {...} else {} result=y−x;] result ≥ 0)

The SE state (U,C, ϕ) given above is valid iff for any Kripke state σ satisfying
the path condition C, whenever we execute the program if (y<x) ... ; in σ, then
in the reached final state the value of program variable result is non-negative.

We explain how the SET for the example is constructed by stepwise symbolic
execution: Symbolic execution of the first statement (by applying the appropriate
calculus rule) splits the SET into the following two new intermediate states:

(skip, {x > 0, y > 0, y < x}, [{...} result=y−x;] result ≥ 0)
(skip, {x > 0, y > 0, ¬y < x}, [{} result=y−x;] result ≥ 0)

On each branch, either the body of the then-branch or the else-branch has to be
executed, followed by the remaining program. The remaining program is just a
single assignment statement here, but could be arbitrarily complex in general. In
addition, the path condition in each branch has been extended by the conjunct
y < x and its negation, respectively. Continuing symbolic execution on the first
branch results in the state

((x := y ‖ y := x), {x > 0, y > 0, y < x}, [result=y−x;] result ≥ 0)) .

The motivation for state merging becomes very clear now: on each branch the
same remaining program has to be executed.

3 The General Lattice Model

Symbolic Execution can be cast as abstract interpretation [11]. Each SE state
describes a potentially infinite set of concrete states. As abstract interpretation
demands a complete semilattice with join operation, partial order, least and top
element, we define a concretization function from SE states to concrete states as
well as a partial order relation between SE states.

Definition 5 (Concrete Execution States). A concrete execution state is a
pair (σ, ϕ) of a Kripke state σ and a formula ϕ (the program counter).

A concrete execution state for a given program counter assigns to each program
variable a concrete value of the universe. We define the semantics of SE states
by stipulating a concretization function from SE states to concrete states based
on the evaluation function val (K,σ; ·) (β is not needed as formulas are closed).

Definition 6 (Concretization Function). Let s = (U,C, ϕ) be an SE state.
The concretization function concr maps s to the set of concrete states

concr (s) :=
{

(σ′, ϕ) : σ′ = val (K,σ;U) and K,σ is an arbitrary

structure / Kripke state such that val (K,σ;C) = tt
}

The set of concrete states for a symbolic state s contains all pairs of Kripke
states σ′ and the program counter such that σ′ can be reached via some state σ
satisfying s’s path condition in some Kripke structure. So the set concr (s) con-
tains exactly the concrete states that are described by the SE state s. Consider,
for instance, the SE state (x := c, {c > 0} , ϕ): The set of concretizations for this
state consists of all pairs (σ, ϕ), where σ is any function mapping the program
variable x to a strictly positive integer.

Based on Defn. 6, we define a weakening relation expressing that one symbolic
execution state describes more concrete states than another one.

Definition 7 (Weakening Relation). Let s1, s2 be two SE states. State s2 is
weaker than (a weakening of) s1 (written: s1 . s2) iff concr (s1) ⊆ concr (s2).

Given a state s1 with satisfiable path condition, Defs. 6 and 7 imply that a
state s2 can only be weaker than s1 if both have syntactically the same pro-
gram counter. States with unsatisfiable path condition have an empty set of
concretizations and hence are stronger than any other state.

Consider the SE states s1 = (x := c, {c > 0} , ϕ) and s2 = (x := c, {c ≥ 0} , ϕ).
The set of concretizations of s2 contains all concrete states of s1 and additionally
all concrete states that map x to zero, hence s2 is a weakening of s1 (s1 . s2).

Consider the SE state s3 = (x := if (true) then (c) else (t) , {c > 0} , ϕ). Al-
though s1 and s3 are syntactically different, all Kripke models coincide on the
value of x and we would actually prefer to consider them as equal. Hence, we
define an extensional equality s1

concr
= s2 :⇔ concr (s1) = concr (s2) stating that

symbolic execution states are equal iff they evaluate to the same set of concrete
execution states. Using

concr
= as equality, we can state the following lemma:

Lemma 1. The weakening relation . is a partial order relation.

The core of our formal framework is a family of join-semilattices parametric
in a join operation. The partial order induced by the join operation is constrained
by the semantic weakening relation, see Defn. 7.

Definition 8 (Induced Join-Semilattice of States). Let ϕ ∈ Fml be a
closed formula. The carrier set Sϕ for ϕ is defined as

Sϕ := { (U,C, ϕ)| (U,C, ϕ) is an SE state} .

A join-semilattice of SE states is a structure (Sϕ, ṫ) over Sϕ with operator ṫ s.t.

the semilattice properties(based on
concr

=) (SEL1)–(SEL3) hold for all a, b, c ∈ Sϕ:

(SEL1) Idempotency: a ṫ a concr
= a (SEL2) Commutativity: a ṫ b concr

= b ṫ a
(SEL3) Associativity: (a ṫ b) ṫ c concr

= a ṫ (b ṫ c)

Furthermore, we require that the partial order relation � on Sϕ defined as

a � b :⇔ a ṫ b concr
= b

satisfies (SEL4) and (SEL5) for a = (Ua, Ca, ϕ) ∈ Sϕ and b = (Ub, Cb, ϕ) ∈ Sϕ:

(SEL4) Correctness: a � b implies a . b
(SEL5) Conservativity: a � b implies that Cb is logically equivalent to a

formula C ∧Ax v [c /v],3 where (1) c are all uninterpreted Skolem
constants occurring in b but not contained in a, (2) C does not
contain any of the c, (3)

∧
Ca → C is provable, and (4) the

formula ∃v; Ax v is provable.

We call {Lϕ}ϕ∈Fml
:= {(Sϕ, ṫ)}ϕ the induced family of join-semilattices for ṫ.

We term (SEL4) correctness since it enables, together with (SEL5), to prove
the correctness of our state merging rule (Thm. 1 below). The conservativity
property (SEL5) imposes restrictions on merge operations that introduce Skolem
constants (thus extending the signature), such as the abstraction technique in-
troduced in Sect. 4.3. Property (SEL5) enforces that the path condition of a
merged state is divisible into (1) a formula C without new constants which is
implied by the states that are merged (for example, the disjunction of the path
conditions of the merged states) and (2) a formula Ax v [c /v] providing restric-
tions on the values of the new constants. In addition (3) it must be possible
in every structure to assign values to the new constants such that Ax v [c /v]
holds. This is achieved by proving ∃v; Ax v in the unextended signature of the
merged states. Ax v may be seen as a (generalized) defining axiom [24] for the
c: we only demand the existence condition ` ∃v; Ax v and explicitly forgo the
uniqueness condition to facilitate abstraction. In summary, (SEL5) allows only
“conservative” extensions to a merged path condition. An example for a for-
mula Ax v [c /v] is c > 0, where c is a constant introduced in the merging step.
Example 2 (Sect. 4.2) shows a fragment of a join-semilattice induced by a join
operation based on the if (·) then (·) else (·) operator.

4 State Merging Techniques

We instantiate our framework with two join operations: the If-Then-Else (ITE)
technique, a “classic” of state merging for symbolic execution (e.g., [18,21,23])

3 ψv

[
t
/
v
]

denotes the substitution of the terms t for the free variables v in ψv.

with full precision; and an abstraction-based technique which trades efficiency
with potential loss of precision. To simplify specification of the join operations,
we define a pattern that can be instantiated with specific merging techniques.

4.1 A State Merging Pattern

Definition 9. Given two SE states sj = (Uj , Cj , ϕ), j = 1, 2, with program
variables x1, . . . , xn ∈ PV of type T occurring in the Uj. A merge technique M
defines two functions joinVal (s1, s2; x, cx) and constraints (s1, s2; x, cx) mapping
s1, s2, program variable x and a fresh (for x) Skolem constant cx to a closed
term and a JavaDL formula, respectively. The join operation ṫM is defined by

s1 ṫM s2 := (U∗, C∗, ϕ) = ((U1, C1)� (U2, C2) , (U1, C1)> (U2, C2) , ϕ)

where U∗ = (U1, C1)�(U2, C2) := (x1 := t1 ‖ x2 := t2 ‖ · · · ‖ xn := tn). To define
the terms ti, let cx1

, cx2
, . . . , cxn

be fresh Skolem constants of suitable types. Then

ti :=

{
{U1} xi if (?) holds

joinVal (s1, s2; xi, cxi) otherwise

Define C∗ = (U1, C1)> (U2, C2) := (
∧
C1 ∨

∧
C2) ∧ {U∗}

(∧
Cabs

i

)
where

Cabs
i :=

{
true if (?) holds

constraints (s1, s2; xi, cxi) otherwise

Condition (?) holds if xi is evaluated identically in either state and defined as

(?) ` (C1 → {U1}P (xi))↔ (C2 → {U2}P (xi))

where P is a fresh (for U1, U2, C1, C2, ϕ) predicate symbol.

The provability relation “`” in (?) is undecidable, but it can be safely approxi-
mated in practice. For example, a prover may simply return “unprovable” after
exceeding a fixed time limit. This way soundness is maintained at the cost of
completeness due to overapproximation in some situations. The update applica-
tion of {U∗} to

(∧
Cabs

i

)
allows to take into account relations between values

of program variables changed by the merge (e.g., the merge by predicate ab-
straction for the dist example in Sect. 5). Otherwise, only relations between
constants and values before the merge would be reflected.

4.2 The If-Then-Else Technique

Definition 10 (If-Then-Else Merge). Given two SE states sj = (Uj , Cj , ϕ),
j = 1, 2, the join operation ṫite is defined by

joinVal (s1, s2; x, cx) := if
(∧

C1

)
then ({U1}x) else ({U2}x)

constraints (s1, s2; x, cx) := true

(x := if (y < x) then (y) else (x) ‖ y := if (y < x) then (x) else (y) ,Γ, ϕ)

(x := y ‖ y := x,Γ ∪ {y < x} , ϕ) (x := x ‖ y := y,Γ ∪ {y ≥ x} , ϕ)

Fig. 2. Small excerpt of (Sϕ, ṫite) for the dist example.

The definition can be generalized by allowing a distinguishing formula for the
first argument of the if (·) then (·) else (·) term instead of

∧
C1. It suffices to find

a set of sub-conjuncts of C1 whose negation implies C2. Often one can simply
choose the guard of the conditional statement which caused the SET to branch.

Proposition 1. The “If-Then-Else Merge” technique induces a family of join-
semilattices of SE states, i.e., the operation ṫite and its associated partial order
relation � satisfy axioms (SEL1)–(SEL5) of Defn. 8.

Example 2. Fig. 2 depicts a fragment of the join-semilattice (Sϕ, ṫite) induced
by ṫite for Listing 1. The two states at the bottom of the figure correspond to
the outcome of the execution until the end of the if block, where Γ represents a
common set of preconditions. Since the values for both x and y differ in those
states, the If-Then-Else construction is applied. The differing formulas in the
path conditions, y < x and y ≥ x, vanish in the path condition of the merged
state since their disjunction can be simplified to true.

4.3 Abstract Weakening and Predicate Abstraction

Our General Lattice Framework, along with the state merging technique pro-
posed below, at least partially closes the gap between symbolic execution and
abstract interpretation [11] by facilitating merges based on abstract domain lat-
tices. We first define the notion of abstract domain elements.

Definition 11 (Abstract Domain Element). An Abstract Domain Element
is a function defAx : Trm → Fml mapping terms to closed formulas.

Intuitively, an abstract domain element models an infinite set of defining ax-
ioms for JavaDL terms. If an axiom is true for a given term, then this term is
described by the corresponding abstract domain element. This rather technical,
syntactic definition is beneficial for the application in branch merging and al-
lows for a straightforward embedding of predicate abstraction [16]. However, in
contrast to predicate abstraction we allow infinite domains.

Definition 12 (Abstract Domain Lattice). An Abstract Domain Lattice is
a join-semilattice AT = (AT ,t) with the induced partial order relation v for a
countable set AT of abstract domain elements accepting terms of some fixed type
T as arguments. We impose the following requirements on AT and v:
(1) AT includes two elements with ⊥ (t) = false, > (t) = true for any t ∈ Trm.
(2) For a, b ∈ AT with a v b, `a (t)→ b (t) holds for any term t of type T .
(3) For all a ∈ AT except for ⊥, it holds that ` ∃v; a (v).

Example 3 below illustrates the above definitions in the context of predicate
abstraction. As usual, we have a bottom and a top element, where the bottom
element is the only one that is not satisfiable. Furthermore, for each lattice
element a that is more concrete than an element b (a v b), also the defining axiom
of a has to be stronger than that of b. Now we are in a position to generalize the
“If-Then-Else Merge” technique: instead of using conditional terms for the result
of joinVal (s1, s2; x, cx) as in Defn. 10, we compute a sound abstraction of the SE
states to be merged. Technically, we employ the symbols cx and constrain them
by defining axioms computed from a suitable join in the join semi-lattice.

Definition 13 (Abstract Weakening Merge Method). Let AT = (AT ,t)
be an abstract domain lattice. Given two SE states sj = (Uj , Cj , ϕ), j = 1, 2, the
join operation ṫabstr is defined by

joinVal (s1, s2; x, cx) := cx constraints (s1, s2; x, cx) := (defAx 1 t defAx 2) (cx)

where, for k ∈ 1, 2, defAxk ∈ AT are abstract domain elements such that Ck →
defAxk ({Uk} x) is provable and there is no element defAx ′k ∈ AT with defAx ′k 6=
defAxk and defAx ′k v defAxk.

The constraints on defAxk state that they must be contained in the ab-
stract domain lattice. There is not necessarily a unique element such that Ck →
defAxk ({Uk} xi) is provable. Any element for which there is no strictly smaller
one suffices. For countable abstract lattices with an enumerable linearization,
the functions defAxk are computable, in particular, for finite domains an enu-
meration is obtained by topological sorting. For the sign analysis domain, one
enumeration is ⊥,−, 0,+,>. Generally, infinite domains should support widen-
ing [11] to ensure that suitable abstractions can be computed.

In Defn. 13 we consider lattices with a uniform type. It is possible to use
different lattices for different types in the merge technique. When no lattice is
specified for some type, If-Then-Else merges are used as fallback. Depending on
the situation, it may also be appropriate to define multiple lattices for the same
type (see Example 3 and Fig. 3 for a concrete example for ṫabstr).

Proposition 2. The abstract weakening merge method induces a family of join-
semilattices of SE states, i.e. the operation ṫabstr and its associated partial order
relation � satisfy the axioms (SEL1)–(SEL5) of Defn. 8.

>

int v 7→ v ≥ x int v 7→ v ≥ 0

int v 7→ v ≥ x ∧ v ≥ 0

⊥
Fig. 3. Abstract domain for Example 3

Predicate abstraction [16] is an instance of
abstract weakening where the domain ele-
ments are constructed from combinations
of a given finite set of unary predicates.
The following example defines a domain
for predicate abstraction that captures re-
lations between program variables.

Example 3 (Predicate Abstraction as Abstract Domain). Consider Listing 1. To
prove that the result is non-negative, we need after the merge (line 7) the fact

Listing 2. abs example

1 public int abs(int num) {
2 int result ;
3 if (num < 0) { result = −num; }
4 else { result = num; }
5 return result;
6 }

Listing 3. posSum example

1 public int posSum(int x, int y) {
2 while (x > 0) { y++; x−−; }
3 return abs(y);
4 }

Listing 4. gcd example

1 public static int gcd(int a, int b) {
2 if (a < 0) a = −a;
3 if (b < 0) b = −b;
4 int big, small;
5 if (a > b) {
6 big = a;
7 small = b;
8 } else {
9 big = b;

10 small = a;
11 }
12 return gcdHelp(big, small);
13 }

that the value of y is not smaller than the value of x. To capture this relation
among the variables, we choose as abstraction predicates v ≥ x and v ≥ 0, where
v is a placeholder for the input term. The resulting abstract domain is built from
the conjunctions of all subsets of those predicates, see Fig. 3.

State Merging with Join-Semilattices The following theorem establishes the cor-
rectness of state merges with induced join-semilattices in the course of symbolic
execution. We omit the proof for space reasons, and refer the reader to [22].

Theorem 1 (Correctness of Merging with Induced Join-Semilattices).
Let ϕ ∈ Fml be a formula and Lϕ an induced join-semilattice for a join op-
eration ṫ. Then, merging two SE states si = (Ui, Ci, ϕ), i = 1, 2, to a state
s∗ = s1 ṫ s2 is sound, i.e. if s∗ is valid, then both s1 and s2 are valid.

Example 4 (Continuation of Example 3). After symbolic execution of the condi-
tional statement, we are left with two states that have identical program coun-
ters. So we can merge them using the abstraction predicates of Example 3 and
end up in a single (valid) SE state as shown in Fig. 4.

...
(x := y ‖ y := x, {C1, y ≤ −1 + x} , ϕ)

...
(x := x ‖ y := y, {C2, y ≥ x} , ϕ)

(x := c1 ‖ y := c2, {(
∧
C1) ∨ (

∧
C2) ,

{ x := c1 ‖ y := c2}(c1 ≥ x ∧ c1 ≥ 0 ∧ c2 ≥ x ∧ c2 ≥ 0)} , ϕ)

Fig. 4. Example: Merging by Predicate Abstraction

5 Evaluation

To assess the efficacy of our state merging methods, we implemented them in the
KeY verification system and applied them on a micro benchmark suite consisting
of four Java programs. We also present the results of a highly complex case study
on the TimSort method [15], which has been redone using our implementation.

Example # Rule Apps Diff. (%) #Merges Merge Techn. Abstr. Predicates
w/o merge with merge

dist 219 254 -15.98 % 1 ITE –
dist 219 206 5.94 % 1 PRED (conj) {v ≥ 0, v ≤ y}

abs 156 137 12.18 % 1 ITE –
abs 156 132 15.38 % 1 PRED (disj) {v > 0, v = 0, v < 0}

gcd 9,056 8,758 3.29 % 2 ITE –

gcd 9,056 7,591 16.18 % 2 PRED (conj)
{v ≥ 0, (v = a ∨ v = −a)}
{v ≥ 0, (v = b ∨ v = −b)}

posSum 1,422 926 34.88 % 4 ITE –
posSum 1,422 911 35.94 % 4 PRED {v = x + y}

PRED (conj/disj): predicate abstraction with conjunctions/disjunctions of the predicates
ITE : the If-Then-Else merge technique.

Table 3. Micro benchmark results

5.1 Micro Benchmarks

Our micro benchmarks comprise the dist method (→ Listing 1), method abs

(→ Listing 2) computing the absolute of a given integer parameter, method gcd

(→ Listing 4) computing the Greatest Common Divisor (GCD) of two integers,
and method posSum computing the absolute of the sum of two positive integers
(→ Listing 3). In the dist example, the SE states after the execution of the if
statement are suitable for merging. For abs, where the proof goal is to show
that the result is positive, we use state merging after the execution of the if
block before Line 5. In the case of gcd, we aim to prove that the returned result
is actually the GCD of the input; state merging techniques are applied after
Lines 2 and 3. Method posSum demonstrates the application of state merging
for a while loop. Our goal is to prove that the returned result is the absolute of
the sum of the inputs. To render the SET finite, we constrain the value of x by
the upper bound 5. Thus, the loop is unwound five times during SE, giving the
opportunity of four merges before the call to the method abs in Line 3.

For each example, we compare the number of rule applications in a proof
without merging to the corresponding number in a proof containing merge rule
applications on the basis of the If-Then-Else as well as the predicate abstraction
technique. Results are shown in Table 3. In the last column, the predicates used
for abstraction are listed; v is a placeholder for an input term of type int. The
choice for abs induces a standard abstract domain for sign analysis of integers;
in the other cases, the predicates are tailored to the specific situations.

The result for dist demonstrates that If-Then-Else merging can even in-
crease the proof size when states are merged close to the end of SE. Merging
with predicate abstraction was beneficial in all cases. However, If-Then-Else
merging is easy to automate, whereas it is a harder problem to automatically
infer abstraction predicates. Furthermore, the TimSort case study affirms that
If-Then-Else merges can substantially decrease the sizes of larger proofs.

5.2 TimSort

In 2015, de Gouw et al. [15] discovered a bug in the TimSort implementation of
the JDK library, Java’s default sorting routine. The bug triggered, under certain

Method #Rule Apps #Rule Apps #Merges Percentage Changes
(in [1]) (with Merging) with State Merging

ensuresCapacity 44,346 50,707 1 -14%

ensuresCapacity* 44,346 37,815 1 15%

mergeAt 279,155 63,309 6 77%

gallopLeft 303,716 88,332 6 71%

sort(a,lo,hi,c) 235,632 152,752 1 35%

mergeHi N/A 460,409 5 NaN

*) Proof by authors of this paper, uses predicate abstraction rather than If-Then-Else.

Table 4. Statistics comparing proofs with and without state merging

circumstances, an uncaught exception. The authors fixed the bug and proved its
absence as well as that of any other uncaught exception. An extended journal
version of [15] is currently under preparation, where all verification proofs are
being redone using the state merging approach presented in this paper. De Gouw
et al. kindly allowed us to include their current results as part of our evaluation.4

Table 4 provides a comparison of the proof sizes with and without merging. It
shows that the proof sizes improved significantly for most proofs. All merges
used, if not stated otherwise, the If-Then-Else technique and thus required no
expert knowledge. In particular, state merging allowed to verify the method
mergeHi which was out of reach in [15] due to the path explosion problem.

For ensuresCapacity, where merging with If-Then-Else actually increased
the proof size, we created a new proof using a merge based on predicate abstrac-
tion. The resulting proof size is 15% smaller compared to the version without
merging and even 25% smaller than the proof with If-Then-Else based merging.

6 Lessons Learned and Future Work

The proposed state merging approach transforms an SET into a connected and
rooted Directed Acyclic Graph (DAG). Changing the underlying data structures
in a complex verification system such as KeY would be a substantial undertaking.
We implemented a different solution by adding the new merge node as a child to
only one of the parents and linking the second parent to it. Our implementation
ensures that, if the subtree below a merge node is closed (or the merge node is
pruned away), then the linked node is also closed (or “unlinked”).

It is important to automate state merging as much as possible, in par-
ticular for less complex verification tasks that are otherwise fully automatic.
To help this, we extended the specification language JML with the annota-
tion /∗@ merge proc <join operator> @∗/. It is placed in front of a Java block
after which the merge is supposed to happen. For certain join operators, for ex-
ample the If-Then-Else join operator, this requires much less expert knowledge
than the definition of a block contract, i.e. an annotation of a block of statements
with pre- and postconditions, as an alternative way of tackling path explosion.

In our experiments, we discovered that state merging with the If-Then-Else
technique is most beneficial when applied in situations where (1) a substantial
amount of code remains to be executed, and thus a lot of repetition can be
avoided, and (2) the difference between the states to be merged is as small as

4 Available at http://www.key-project.org/timsort/stats.html

http://www.key-project.org/timsort/stats.html

possible. “Difference” means the number of variables attaining different values in
the symbolic states and the number of different formulas in the path conditions.

Predicate abstraction-based state merging is applicable to a wider range of
constellations. However, to come up with suitable predicates requires a certain
amount of expertise. An unsuitable choice of abstraction predicate can cause
the unfeasibility of the proof goal, because abstraction loses precision. At this
time, to merge states with predicate abstraction is comparable in difficulty to
writing block contracts. Nevertheless, we think that state merging is more suit-
able for automation, because it can be performed on-the-fly during the proof
process. Future work will aim at integrating heuristic approaches to improve the
performance of If-Then-Else state merging [21] as well as methods developed for
specification generation to automatically infer abstraction predicates [17,25].

7 Related Work and Conclusion

Existing work on state merging in symbolic execution employs If-Then-Else
based techniques [2,18,21,23] or addresses the automatic generation of loop
invariants by the means of abstraction [6,25]. Kuznetsov et al. [21] try to assess
the “cost-benefit ratio” of If-Then-Else based merges by heuristically trading off
the reduction of states against the complexity of the resulting expressions. Bubel
et al. [6] use value abstraction and Weiß et al. [25] use predicate abstraction for
merging states in the course of the automatic generation of loop invariants.

In contrast to previous work, our approach is not limited to a particular state
merging technique. We devised a general lattice-based framework for join opera-
tions and proved soundness of a state merging rule for join operations conforming
to our framework. The two most popular state merging techniques in the liter-
ature, If-Then-Else and predicate abstraction, are instances of our framework.
Our implementation is based on the state-of-the-art verification system KeY [1].
It has been extensively evaluated with the highly complex TimSort case study
and it was demonstrated that significant improvements can be gained. This led
to proofs that were out of reach before.

Acknowledgment We would like to thank the authors of [15] for the permission
to quote data from the extended journal version of their paper under preparation.

References

1. Ahrendt, W., Beckert, B., et al.: The KeY Platform for Verification and Analysis of
Java Programs. In: Giannakopoulou, D., Kroening, D. (eds.) 6th Working Conf. on
Verified Software: Theories, Tools, and Experiments. Springer (2014)

2. Anand, S., Godefroid, P., et al.: Demand-Driven Compositional Symbolic Execu-
tion. In: Proc. of the 14th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 367–381. Springer (2008)

3. Anand, S., Păsăreanu, C.S., et al.: Symbolic Execution with Abstract Subsumption
Checking. In: 13th Intl. Conf. on Model Checking Software. Springer (2006)

4. Beckert, B., Hähnle, R.: Reasoning and Verification. IEEE Intelligent Systems
29(1), 20–29 (2014)

5. Beckert, B., Hähnle, R., et al. (eds.): Verification of Object-Oriented Software: The
KeY Approach. Springer (2006)

6. Bubel, R., Hähnle, R., et al.: Abstract Interpretation of Symbolic Execution
with Explicit State Updates. In: de Boer, F., Bonsangue, M.M., et al. (eds.) 6th
Intl. Symp. on Formal Methods for Components and Objects. Springer (2009)

7. Burstall, R.M.: Program Proving as Hand Simulation with a Little Induction. In:
Information Processing, pp. 308–312. Elsevier (1974)

8. Cadar, C., Sen, K.: Symbolic Execution for Software Testing: Three Decades Later.
Communications of the ACM 56(2), 82–90 (2013)

9. Chu, D., Jaffar, J., et al.: Lazy Symbolic Execution for Enhanced Learning. In:
Bonakdarpour, B., Smolka, S.A. (eds.) Proc. of the 5th Intl. Conf. on Runtime
Verification. pp. 323–339. Springer (2014)

10. Clarke, E.M., Grumberg, O., et al.: Model Checking. The MIT Press (1999)
11. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In: 4th
Symp. of POPL. pp. 238–252. ACM Press (Jan 1977)

12. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Springer, sec-
ond edition edn. (1996)

13. Fitting, M.C., Mendelsohn, R.: First-Order Modal Logic. Kluwer (1998)
14. Gosling, J., Joy, B., et al.: The Java (TM) Language Specification. Addison-Wesley

Professional, 3rd edn. (2005), http://psc.informatik.uni-jena.de/languages/
Java/javaspec-3.pdf

15. Gouw, S.d., Rot, J., et al.: OpenJDK’s Java.utils.Collection.sort() Is Broken: The
Good, the Bad and the Worst Case. In: Kroening, D., Pasareanu, C.S. (eds.)
Proc. of the 27th Intl. Conf. on Computer Aided Verification. Springer (2015)

16. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) Proc. of the 9th Intl. Conf. on Computer Aided Verification. pp. 72–83.
Springer (1997)

17. Hähnle, R., Wasser, N., et al.: Array Abstraction with Symbolic Pivots. In:
Ábrahám, E., Bonsangue, M., et al. (eds.) Theory and Practice of Formal Methods.
Springer (2016)

18. Hansen, T., Schachte, P., et al.: State Joining and Splitting for the Symbolic Ex-
ecution of Binaries. In: Bensalem, S., Peled, D.A. (eds.) Proc. of the 9th Intl.
Workshop on Runtime Verification. pp. 76–92. Springer (2009)

19. Harel, D., Tiuryn, J., et al.: Dynamic Logic. MIT Press, Cambridge, MA, USA
(2000)

20. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7), 385–394 (1976)

21. Kuznetsov, V., Kinder, J., et al.: Efficient State Merging in Symbolic Execution.
In: Proc. of the 33rd Conf. on PLDI. pp. 193–204. ACM (2012)

22. Scheurer, D.: From Trees to DAGs: A General Lattice Model for Symbolic Execu-
tion. Master’s thesis, Technische Universität Darmstadt (2015), http://tinyurl.
com/Trees2DAGs

23. Sen, K., Necula, G., et al.: MultiSE: Multi-Path Symbolic Execution using Value
Summaries. In: 10th Joint Meeting on Foundations of Software Engineering. pp.
842–853. ACM (2015)

24. Shoenfield, J.R.: Mathematical logic. Addison-Wesley (1967)
25. Weiß, B.: Predicate Abstraction in a Program Logic Calculus. In: Leuschel, M.,

Wehrheim, H. (eds.) Proc. of the I7th Intl. Conf. on Integrated Formal Methods.
pp. 136–150. Springer (2009)

http://psc.informatik.uni-jena.de/languages/Java/javaspec-3.pdf
http://psc.informatik.uni-jena.de/languages/Java/javaspec-3.pdf
http://tinyurl.com/Trees2DAGs
http://tinyurl.com/Trees2DAGs

	A General Lattice Model for Merging Symbolic Execution Branches The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-47846-3_5.

