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Chapter 1
First-Order Logic

Peter H. Schmitt

chap:fol

1.1 Introduction

The ultimate goal of first-order logic in the context of this book, and this applies
to a great extent also to Computer Science in general, is the formalization of and
reasoning with natural language specifications of systems and programs. This chap-
ter provides the logical foundations for doing so in three steps. In Section 1.2 basic
first-order logic (FOL) is introduced much in the tradition of Mathematical Logic
as it evolved during the 20th century as a universal theory not tailored towards a
particular application area. Already this section goes beyond what is usually found
in textbooks on logic for computer science in that type hierarchies are included
from the start. In the short Section 1.3 two features will be added to the basic logic,
that did not interest the mathematical logicians very much but are indispensable for
practical reasoning. In Section 1.4 the extended basic logic will be instantiated to
Java first-order logic (JFOL), tailored for the particular task of reasoning about Java
programs. The focus in the present chapter is on statements; programs themselves
and formulas talking about more than one program state at once will enter the scene
in Chapter 2 in the KeY book.

1.2 Basic First-Order Logic
sec02:BasicFOL

1.2.1 Syntax
subsec02:BasicFOLSyntax

def:typehier Definition 1.1. A type hierarchy is a pair T = (TSym,v), where

1. TSym is a set of type symbols;
2. v is a reflexive, transitive relation on TSym, called the subtype relation;
3. there are two designated type symbols, the empty type ⊥ ∈ TSym and the uni-

versal type > ∈ TSym with ⊥v Av> for all A ∈ TSym.

1



2 1 First-Order Logic

We point out that no restrictions are placed on type hierarchies in contrast to other
approaches requiring the existence of unique lower bounds.

Two types A, B in T are called incomparable if neither Av B nor Bv A.

def:Signature Definition 1.2. A signature, which is sometimes also called vocabulary, Σ =
(FSym,PSym,VSym) for a given type hierarchy T is made up of

1. a set FSym of typed function symbols,
by f : A1× . . .×An → A we declare the argument types of f ∈ FSym to be
A1, . . . ,An in the given order and its result type to be A,

02:item:SignaturePSym 2. a set PSym of typed predicate symbols,
by p(A1, . . . ,An) we declare the argument types of p ∈ PSym to be A1, . . . ,An in
the given order,
PSym obligatory contains the binary dedicated symbol .

=(>,>) for equality.
and the two 0-place predicate symbols true and false.

3. a set VSym of typed variable symbols,
by v : A for v ∈ VSym we declare v to be a variable of type A.

All types A, Ai in this definition must be different from ⊥. A 0-ary function symbol
c : → A is called a constant symbol of type A. A 0-ary predicate symbol p() is called
a propositional variable or propositional atom. We do not allow overloading: The
same symbol may not occur in FSym∪PSym∪VSym with different typing.

The next two definitions define by mutual induction the syntactic categories of terms
and formulas of typed first-order logic.

def:TermA Definition 1.3. Let T be a type hierarchy, and Σ a signature for T . The set TrmA
of terms of type A, for A 6=⊥, is inductively defined by

1. v ∈ TrmA for each variable symbol v : A ∈ VSym of type A.
item:termComposition 2. f (t1, . . . , tn) ∈ TrmA for each f : A1× . . .×An → A ∈ FSym and all terms ti ∈

TrmBi with Bi v Ai for 1≤ i≤ n.
item:condTerm 3. (if φ then t1 else t2) ∈ TrmA for φ ∈ Fml and ti ∈ TrmAi such that A2 v A1 = A

or A1 v A2 = A.

If t ∈ TrmA we say that t is of (static) type A and write α(t) = A.

Note, that item (2) in Definition 3 entails c ∈ TrmA for each constant symbol c : →
A ∈ FSym. Since we do not allow overloading there is for every term only one type
A with t ∈ TrmA. This justifies the use of the function symbol α .

Terms of the form defined in item (3) are called conditional terms. They are a
mere convenience. For every formula with conditional terms there is an equivalent
formula without them. More liberal typing rules are possible. The theoretically02MereConvenience
most satisfying solution would be to declare the type of (if φ then t1 else t2) to be
the least common supertype A1tA2 of A1 and A2. But, the assumption that A1tA2
always exists would lead to strange consequences in the program verification setting.

def:FolFml Definition 1.4. The set Fml of formulas of first-order logic for a given type hierar-
chy T and signature Σ is inductively defined as:
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1. p(t1, . . . , tn)∈ Fml for p(A1, . . . ,An)∈ PSym, and ti ∈ TrmBi with Bi v Ai for all
1≤ i≤ n.
As a consequence of item 2 in Definition 1.2 we know
t1

.
= t2 ∈ Fml for arbitrary terms ti and true and false are in Fml.

2. (¬φ), (φ ∧ψ), (φ ∨ψ), (φ →ψ), (φ ↔ψ) are in Fml for arbitrary φ ,ψ ∈ Fml.
3. ∀v;φ , ∃v;φ are in Fml for φ ∈ Fml and v : A ∈ VSym.

As an inline footnote we remark that the notation for conditional terms can also be
used for formulas. The conditional formula (if φ1 then φ2 else φ3) is equivalent to
(φ1∧φ2)∨ (¬φ1∧φ3).

If need arises we will make dependence of these definitions on Σ and T explicit
by writing TrmA,Σ , FmlΣ or TrmA,T ,Σ , FmlT ,Σ . When convenient we will also use
the redundant notation ∀ A v;φ , ∃ A v;φ for a variable v : A ∈ VSym.

Formulas built by clause (1) only are called atomic formulas.

def:FreeBoundVars Definition 1.5. For terms t and formulas φ we define the sets var(t), var(φ) of all
variables occurring in t or φ and the sets fv(t), fv(φ) of all variables with at least one
free occurrence in t or φ :

var(v) = {v} fv(v) = {v} for v ∈ VSym
var(t) =

⋃n
i=1 var(ti) fv(t) =

⋃n
1=i fv(ti) for t = f (t1, . . . , tn)

var(t) = var(φ)∪ fv(t) = fv(φ)∪ for t =
var(t1)∪ var(t2) fv(t1)∪ fv(t2) (if φ then t1 else t2)

var(φ) =
⋃n

i=1 var(ti) fv(φ) =
⋃n

i=1 fv(ti) for φ = p(t1, . . . , tn)

var(¬φ) = var(φ) fv(¬φ) = fv(φ)

var(φ) = var(φ1)∪ var(φ2) fv(φ) = fv(φ1)∪ fv(φ2) for φ = φ1 ◦φ2
where ◦ is any binary Boolean operation

var(Q v.φ) = var(φ) fv(Q v.φ) = var(φ)\{v} where Q ∈ {∀,∃}

A term without free variables is called a ground term, a formula without free vari-
ables a ground formula or closed formula.

It is an obvious consequence of this definition that every occurrence of a variable
v in a term or formula with empty set of free variables is within the scope of a
quantifier Q v.

One of the most important syntactical manipulations of terms and formulas are
substitutions, that replace variables by terms. They will play a crucial role in proofs
of quantified formulas as well as equations.

def:Substitution Definition 1.6. A substitution τ is a function that associates with every variable v a
type compatible term τ(v), i.e., if v is of type A then τ(v) is a term of type A′ such
that A′ v A.

We write τ = [u1/t1, . . . ,un/tn] to denote the substitution defined by dom(τ) =
{u1, . . . ,un} and τ(ui) = ti.

A substitution τ is called a ground substitution if τ(v) is a ground term for all
v ∈ dom(τ).
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We will only encounter substitutions τ such that τ(v) = v for all but finitely many
variables v. The set {v ∈ VSym | τ(v) 6= v} is called the domain of τ . It remains to
make precise how a substitution τ is applied to terms and formulas.

def:applySubst Definition 1.7. Let τ be a substitution and t a term, then τ(t) is recursively defined
by:

1. τ(x) = x if x 6∈ dom(τ)
2. τ(x) as in the definition of τ if x ∈ dom(τ)
3. τ( f (t1, . . . , tk)) = f (τ(t1), . . . ,τ(tk)) if t = f (t1, . . . , tk)

Let τ be a ground substitution and φ a formula, then τ(φ) is recursive defined

4. τ(true) = true, τ(false) = false
5. τ(p(t1, . . . , tk)) = p(τ(t1), . . . ,τ(tk)) if φ is the atomic formula p(t1, . . . , tk)
6. τ(t1

.
= tk) = τ(t1)

.
= τ(tk)

7. τ(¬φ) = ¬τ(φ)
8. τ(φ1 ◦φ2) = τ(φ1)◦ τ(φ2) for propositional operators ◦ ∈ {∧,∨,→,↔}

item:def:applySubstQ 9. τ(Qv.φ) = Qv.τv(φ) for Q ∈ {∃,∀} and dom(τv) = dom(τ)\{v} with τv(x) =
τ(x) for x ∈ dom(τv).

There are some easy conclusions from these definitions:

• If t ∈ TrmA then τ(t) is a term of type A′ with A′ v A. Indeed, if t is not a
variable then τ(t) is again of type A.

• τ(φ) meets the typing restrictions set forth in Definition 1.4.

Item 9 deserves special attention. Substitutions only act on free variables. So, when
computing τ(Qv.φ), the variable v in the body φ of the quantified formula is left
untouched. This is effected by removing v from the domain of τ .

It is possible, and quite common, to define also the application of nonground
substitutions to formulas. Care has to be taken in that case to avoid clashes, see
Example 1.8 below. We will only need ground substitutions later on, so we sidestep
this difficulty.

ex:Subst Example 1.8. For the sake of this example we assume that there is a type symbol
int ∈ TSym, function symbols + : int× int→ int, ∗ : int× int→ int, − : int→ int,
exp : int× int→ int and constants 0 : int, 1 : int, 2 : int, in FSym. Definition 1.3
establishes an abstract syntax for terms. In examples we are free to use a concrete,
or pretty-printing syntax. Here we use the familiar notation a+b instead of +(a,b),
a ∗ b or ab instead of ∗(a,b), and ab instead of exp(a,b). Let furthermore x : int,
y : int be variables of sort int. The following table shows the results of applying the
substitution τ1 = [x/0,y/1] to the given formulas

φ1 = ∀x;((x+ y)2 .
= x2 +2xy+ y2) τ1(φ1) = ∀x;((x+1)2 .

= x2 +2∗ x∗1+12)
φ2 = (x+ y)2 .

= x2 +2xy+ y2 τ1(φ2) = (0+1)2 .
= 02 +2∗0∗1+12

φ3 = ∃x;(x > y) τ1(φ3) = ∃x;(x > 1)

Application of the nonground substitution τ2 = [y/x] on φ3 leads to ∃x;(x > x).
While ∃x;(x > y) is true for all assignments to y the substituted formula τ(φ3) is
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not. Validity is preserved if we restrict to clash-free substitutions. A substitution τ

is said to create a clash with formula φ if a variable w in a term τ(v) for v ∈ dom(τ)
ends up in the scope of a quantifier Qw in φ . For τ2 the variable x in τ2(y) will end
up in the scope of ∀x;

The concept of a substitution also comes in handy to solve the following nota-
tional problem. Let φ be a formula that contains somewhere an occurrence of the
term t1. How should we refer to the formula arising from φ by replacing t1 by t2?
E.g. replace 2xy in φ2 by xy2. The solution is to use a new variable z and a formula
φ0 such that φ = [z/t1]φ0. Then the replaced formula can be referred to as [z/t2]φ0. In
the example we would have φ0 = (x+y)2 .

= x2+z+y2. This trick will be extensively
used in Figure 1.1 and 1.2.

We come back to the conditinal terms introduced in item (3) of Definition 1.3. As
mentioned on page 2 they do not increase the expressive power of the language.
This claim is now proved in the following lemma.

elimCondTerm Lemma 1.9. For any formula φ there is a logically equivalent formula φ1 that does
not contain conditional terms.

Proof. Let φ be a formula containing an occurrence of the conditional term t =
(if ψ then t1 else t2). We may assume without loss of generality that φ is in prenex
normal form, i.e. φ = Q1 v1. . . .Qn vn.φ0 with φ0 a quantifierfree formula.

Let φ 1
0 be the formula arising from φ0 by replacing this occurrence of t by t1 and

φ 2
0 the formula arising from φ0 by replacing the occurrence of t by t2. Let

φ
′
0 = (ψ ∧φ

1
0 )∨ (ψ ∧φ

2
0 )

It can be easily seen that φ is logically equivalent to Q1 v1. . . .Qn vn.φ
′
0 and

Q1 v1. . . .Qn vn.φ
′
0 has one occurrence of a conditional term less than φ . Iterating

this construction we arrive at an equivalent formula without conditional terms. ut

1.2.2 Calculus
subsec02:BasicFOLCalculus

The main reason nowadays for introducing a formal, machine readable syntax for
formulas, as we did in the previous subsection, is to get machine support for log-
ical reasoning. For this, one needs first a suitable calculus and then an efficient
implementation. In this subsection we present the rules for basic first-order logic. A
machine readable representation of these rules will be covered in Chapter 4 in the
KeY book. Chapter 15 in the KeY book provides an unhurried introduction on using
the KeY theorem prover based on these rules that can be read without prerequisites.
So the reader may want to step through it before continuing here.

The calculus of our choice is the sequent calculus. The basic data that is ma-
nipulated by the rules of the sequent calculus are sequents. These are of the form
φ1, . . . ,φn =⇒ ψ1, . . . ,ψm. The formulas φ1, . . . ,φn at the left-hand side of the se-
quent separator =⇒ are the antecedents of the sequent; the formulas ψ1, . . . ,ψm on
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andLeft
Γ ,φ ,ψ =⇒ ∆

Γ ,φ ∧ψ =⇒ ∆
andRight

Γ =⇒ φ ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ψ,∆

orRight
Γ =⇒ φ ,ψ,∆

Γ =⇒ φ ∨ψ,∆
orLeft

Γ ,φ =⇒ ∆ Γ ,ψ =⇒ ∆

Γ ,φ ∨ψ =⇒ ∆

impRight
Γ ,φ =⇒ ψ,∆

Γ =⇒ φ → ψ,∆
impLeft

Γ =⇒ φ ,∆ Γ ,ψ =⇒ ∆

Γ ,φ → ψ =⇒ ∆

notLeft
Γ =⇒ φ ,∆

Γ ,¬φ =⇒ ∆
notRight

Γ ,φ =⇒ ∆

Γ =⇒¬φ ,∆

allRight
Γ =⇒ [x/c](φ),∆

Γ =⇒∀x;φ ,∆
with c :→ A a new constant, if x:A

allLeft
Γ ,∀x;φ , [x/t](φ) =⇒ ∆

Γ ,∀x;φ =⇒ ∆

with t ∈ TrmA′ ground, A′ v A, if x:A

exLeft
Γ , [x/c](φ) =⇒ ∆

Γ ,∃x;φ =⇒ ∆

with c :→ A a new constant, if x:A

exRight
Γ =⇒∃x;φ , [x/t](φ),∆

Γ =⇒∃x;φ ,∆
with t ∈ TrmA′ ground, A′ v A, if x:A

close
∗

Γ ,φ =⇒ φ ,∆

closeFalse
∗

Γ , false =⇒ ∆
closeTrue

∗
Γ =⇒ true,∆

Fig. 1.1 First-order rules for the logic FOL fig:folrulesrule:andLeftrule:andRightrule:impRightrule:notLeftrule:allRightrule:allLeftrule:exLeftrule:exRightrule:closerule:closeFalserule:closeTrue

the right are the succedents. In our version of the calculus antecedent and succe-
dent are sets of formulas, i.e., the order and multiple occurrences are not relevant.
Furthermore, we will assume that all φi and ψ j are ground formulas. A sequent
φ1, . . . ,φn =⇒ ψ1, . . . ,ψm is valid iff the formula

∧n
1=i φi→

∨m
1= j ψ j is valid.

The concept of sequent calculi was introduce by the German logician Gerhard
Gentzen in the 1930s, though for a very different purpose.

Figures 1.1 and 1.2 show the usual set of rules of the sequent calculus with equal-
ity as it can be found in many text books, e.g.

Gallier87
[Gallier, 1987, Section 5.4]. Rules are

written in the form

ruleName
P1, . . .Pn

C

The Pi is called the premisses and C the conclusion of the rule. There is no theoreti-
cal limit on n, but most of the time n = 1, sometimes n = 2, and in rare cases n = 3.
Note, that premiss and conclusion contain the schematic variables Γ ,∆ for set of

formulas, ψ,φ for formulas and t,c for terms and constants. We use Γ ,φ and ψ,∆
to stand for Γ ∪{φ} and {ψ}∪∆ . An instance of a rule is obtained by consistently
replacing the schematic variables in premiss and conclusion by the corresponding
entities: sets of formulas, formulas, etc. Rule application in KeY proceeds from bot-
tom to top. Suppose we want to prove a sequent s2. We look for a rule R such that
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there is an instantiation Inst of the schematic variables in R such that the instantia-
tion of its conclusion Inst(S2) equals s2. After rule application we are left with the
task to prove the sequent Inst(S1). If S1 is empty, we succeeded.

defi:closingRules Definition 1.10. The rules close, closeFalse, and closeTrue from Figure 1.1 are
called closing rules since their premisses are empty.

Since there are rules with more than one premiss the proof process sketched above
will result in a proof tree.

defi:proofTree Definition 1.11. A proof tree is a tree, shown with the root at the bottom, such that

1. each node is labeled with a sequent or the symbol ∗,
2. if an inner node n is annotated with Γ =⇒ ∆ then there is an instance of a rule

whose conclusion is Γ =⇒ ∆ and the child node, or children nodes of n are
labeled with the premiss or premisses of the rule instance.

A branch in a proof tree is called closed if its leaf is labeled by ∗. A proof tree is
called closed if all its branches are closed, or equivalently if all its leaves are labeled
with ∗.

We say that a sequent Γ =⇒∆ can be derived if there is a closed proof tree whose
root is labeled by Γ =⇒ ∆ .

As a first simple example, we will derive the sequent =⇒ p∧ q→ q∧ p. The
same formula is also used in the explanation of the KeY prover in Chapter 15 in
the KeY book. As its antecedent is empty, this sequent says that the propositional
formula p∧q→ q∧ p is a tautology. Application of the rule impRight reduces our
proof goal to p∧ q =⇒ q∧ p and application of andLeft further to p,q =⇒ q∧ p.
Application of andRight splits the proof into the two goals p,q=⇒ q and p,q=⇒ p.
Both goals can be discharged by an application of the close rule. The whole proof
can concisely be summarized as a tree

∗
p,q =⇒ q

∗
p,q =⇒ p

p,q =⇒ q∧ p
p∧q =⇒ q∧ p

=⇒ p∧q→ q∧ p

Let us look at an example derivation involving quantifiers. If you are puzzled
by the use of substitutions [x/t] in the formulations of the rules you should refer
back to Example 1.8. We assume that p(A,A) is a binary predicate symbol with
both arguments of type A. Here is the, nonbranching, proof tree for the formula
∃v;∀w; p(v,w)→∀w;∃v; p(v,w):
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∗
∀w; p(c,w), p(c,d) =⇒ p(c,d),∃v; p(v,d)

∀w; p(c,w) =⇒∃v; p(v,d)
∃v;∀w; p(v,w) =⇒∀w;∃v; p(v,w)
=⇒∃v;∀w; p(v,w)→∀w;∃v; p(v,w)

The derivation starts, from bottom to top, with the rule impRight. The next line
above is obtained by applying exLeft and allRight. This introduces new constant
symbols c :→ A and d :→ A. The top line is obtained by the rules exRight and
allLeft with the ground substitutions [w/d] and [v/c]. The proof terminates by an
application of close resulting in an empty proof obligation. An application of the
rules exLeft, allRight is often called Skolemization and the new constant symbols
called Skolem constants.

eqLeft
Γ , t1

.
= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ , t1
.
= t2, [z/t1](φ) =⇒ ∆

provided σ(t1)v σ(t2)

eqRight
Γ , t1

.
= t2 =⇒ [z/t2](φ), [z/t1](φ),∆
Γ , t1

.
= t2 =⇒ [z/t2](φ),∆

provided σ(t2)v σ(t1)

eqSymmLeft
Γ , t2

.
= t1 =⇒ ∆

Γ , t1
.
= t2 =⇒ ∆

eqReflLeft
Γ , t .

= t =⇒ ∆

Γ =⇒ ∆

eqDynamicSort
Γ , t1

.
= t2,∃x(x

.
= t1∧ x .

= t2) =⇒ ∆

Γ , t1
.
= t2 =⇒ ∆

if σ(t1) and σ(t2) are incomparable,
the sort C of x is new and satisfies
C @ σ(t1) and C @ σ(t2)

Fig. 1.2 Equality rules for the logic FOL fig:eqrulesrule:eqLeftrule:eqRight

The calculus implemented in the KeY system is less liberal with regard to the
syntactically allowed equations. In contrast to Definition 1.2 in this technical report
an equation t1

.
= t2 is in the implemented logic only allowed if the types of t1 and t2

are compatible. Thus rule eqDynamicSort in Figure 1.2 would never be applicable.
This rule is however needed for completeness of liberal the variant presented here.
Further comments in the relationship between the logic presented here and the logic
implemented in KeY will be given at the end of subsection 1.2.5.

The rules involving equality are shown in Figure 1.2. The rules eqLeft and eqRight
formalize the intuitive application of equations: if t1

.
= t2 is known, we may replace

wherever we want t1 by t2. In typed logic the formula after substitution might not be
well-typed. Here is an example for the rule eqLeft without restriction. Consider two
types A 6= B with B v A, two constant symbols a : → A and b : → B, and a unary
predicate p(B). Applying unrestricted eqLeft on the sequent b .

= a, p(b) =⇒ would
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result in b .
= a, p(b), p(a) =⇒. There is in a sense logically nothing wrong with

this, but p(a) is not well-typed. This motivates the provisions in the rules eqLeft
and eqRight.

Let us consider a short example of equational reasoning involving the function
symbol + : int× int→ int.

7 ∗
6 (a+(b+ c))+d) .

= a+((b+ c)+d),∀x,y,z;((x+ y)+ z .
= x+(y+ z))

(b+ c)+d .
= b+(c+d),a+(b+ c))+d) .

= a+(b+(c+d)) =⇒
(a+(b+ c))+d) .

= a+(b+(c+d))

5 (a+(b+ c))+d) .
= a+((b+ c)+d),∀x,y,z;((x+ y)+ z .

= x+(y+ z))
(b+ c)+d .

= b+(c+d) =⇒
(a+(b+ c))+d) .

= a+(b+(c+d))

4 (a+(b+ c))+d) .
= a+((b+ c)+d),∀x,y,z;((x+ y)+ z .

= x+(y+ z)) =⇒
(a+(b+ c))+d) .

= a+(b+(c+d))

3 ∀x,y,z;((x+ y)+ z .
= x+(y+ z)) =⇒ (a+(b+ c))+d .

= a+(b+(c+d))

2 ∀x,y,z;((x+ y)+ z .
= x+(y+ z)) =⇒

∀x,y,z,u;(((x+(y+ z))+u) .
= x+(y+(z+u)))

1 =⇒∀x,y,z;((x+ y)+ z .
= x+(y+ z))→
∀x,y,z,u;(((x+(y+ z))+u) .

= x+(y+(z+u)))

Line 1 states the proof goal, a consequence from the associativity of +. Line 2 is ob-
tained by an application of impRight while line 3 results from a four-fold application
of allRight introducing the new constant symbol a, b, c, d for the universally quan-
tified variables x, y, z, u, respectively. Line 4 in turn is arrived at by an application
of allLeft with the substitution [x/a,y/(b+c),z/d]. Note, that the universally quan-
tified formula does not disappear. In Line 5 another application of allLeft, but this
time with the substitution [x/b,y/c,z/d], adds the equation (b+c)+d .

= b+(c+d)
to the antecedent. Now, eqLeft is applicable, replacing on the left-hand side of the
sequent the term (b+c)+d in (a+b)+(c+d) .

= a+(b+(c+d)) by the right-hand
side of the equation (b+ c)+d .

= b+(c+d). This results in the same equation as
in the succedent. Rule close can thus be applied.

Already this small example reveals the technical complexity of equational rea-
soning. Whenever the terms involved in equational reasoning are of a special type
one would prefer to use decision procedures for the relevant specialized theories,
e.g., for integer arithmetic or the theory of arrays.

We will see in the next section, culminating in Theorem 1.21, that the rules from
Figures 1.1 and 1.2 are sufficient with respect to the semantics to be introduced in
that section. But, it would be very inefficient to base proofs only on these first prin-
ciples. The KeY system contains many derived rules to speed up the proof process.
Let us just look at one randomly chosen example:
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doubleImpLeft
Γ =⇒ b,∆ Γ =⇒ c,∆ Γ ,d =⇒ ∆

Γ ,b→ (c→ d) =⇒ ∆

It is easy to see that doubleImpLeft can be derived.
There is one more additional rule that we should not fail to mention:

cut
Γ =⇒ φ ,∆ Γ ,φ =⇒ ∆

Γ =⇒ ∆

provided φ is a ground formula

On the basis of the notLeft rule this is equivalent to

cut′
Γ ,¬φ =⇒ ∆ Γ ,φ =⇒ ∆

Γ =⇒ ∆

provided φ is a ground formula

It becomes apparent that the cut rule allows at any node in the proof tree proceeding
by a case distinction. This is the favorite rule for user interaction. The system might
not find a proof for Γ =⇒ ∆ automatically, but for a cleverly chosen φ automatic
proofs for both Γ ,φ =⇒ ∆ and Γ =⇒ φ ,∆ might be possible.

1.2.3 Semantics
subsec02:BasicFOLSemantics

So far we trusted that the logical rules contained in Figures 1.1 and 1.2 are self-
evident. In this section we provide further support that the rules and the deduction
system as a whole are sound, in particular no contradiction can be derived. So far
we also had only empirical evidence that the rules are sufficient. The semantical
approach presented in this section will open up the possibility to rigorously prove
completeness.

def:FolUniverse Definition 1.12. A universe or domain for a given type hierarchy T and signature
Σ consists of

1. a set D,
2. a typing function δ : D→ TSym \ {⊥} such that for every A ∈ TSym the set

DA = {d ∈ D | δ (d)v A} is not empty.

The set DA = {d ∈ D | δ (d) v A} is called the type universe or type domain for A.
Definition 1.12 implies that for different types A,B ∈ TSym \ {⊥} there is an ele-
ment o ∈ DA∩DB only if there exists C ∈ TSym, C 6=⊥ with C v A and C v B.

lem:TypeDomain Lemma 1.13. The type domains for a universe (D,δ ) share the following properties

1. D⊥ = /0, D> = D,
2. DA ⊆ DB if Av B,
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3. DC = DA∩DB in case the greatest lower bound C of A and B exists.

def:FolStructure Definition 1.14. A first-order structure M for a given type hierarchy T and signa-
ture Σ consists of

• a domain (D,δ ),
• an interpretation I

such that

item:FSymInterp 1. I( f ) is a function from DA1 × ·· · ×DAn into DA for f : A1× . . .×An → A in
FSym,

item:PSymInterp 2. I(p) is a subset of DA1 ×·· ·×DAn for p(A1, . . . ,An) in PSym,
3. I( .=) = {(d,d) | d ∈ D}.

For constant symbols c : → A ∈ FSym requirement (1) reduces to I(c) ∈ DA. It has
become customary to interpret an empty product as the set { /0}, where /0 is deemed
to stand for the empty tuple. Thus requirement (2) reduces for n = 0 to I(p)⊆ { /0}.
Only if need arises, we will say more precisely that M is a T -Σ -structure.

def:VarAssignment Definition 1.15. Let M be a first-order structure with universe D.
A variable assignment is a function β : VSym→ D such that β (v) ∈ DA for

v : A ∈ VSym.
For a variable assignment β , a variable v : A ∈ VSym and a domain element

d ∈ DA, the following definition of a modified assignment will be needed later on:

β
d
v (v
′) =

{
d if v′ = v
β (v′) if v′ 6= v

The next two definitions define the evaluation of terms and formulas with respect
to a structure M = (D,δ , I) for given type hierarchy T , signature Σ , and variable
assignment β by mutual recursion.

def:TermEval Definition 1.16. For every term t ∈ TrmA, we define its evaluation valM,β (t) induc-
tively by:

• valM,β (v) = β (v) for any variable v.
• valM,β ( f (t1, . . . , tn)) = I( f )(valM,β (t1), . . . ,valM,β (tn)).

• valM,β (if φ then t1 else t2) =
{

valM,β (t1) if (M,β ) |= φ

valM,β (t2) if (M,β ) 6|= φ

def:ForEval Definition 1.17. For every formula φ ∈ Fml, we define when φ is considered to be
true with respect to M and β , which is denoted with (M,β ) |= φ , by:
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1 (M,β ) |= true, (M,β ) 6|= false
2 (M,β ) |= p(t1, . . . , tn) iff (valM,β (t1), . . . ,valM,β (tn)) ∈ I(p)
3 (M,β ) |= ¬φ iff (M,β ) 6|= φ

4 (M,β ) |= φ1∧φ2 iff (M,β ) |= φ1 and (M,β ) |= φ2
5 (M,β ) |= φ1∨φ2 iff (M,β ) |= φ1 or (M,β ) |= φ2
6 (M,β ) |= φ1→ φ2 iff (M,β ) 6|= φ1 or (M,β ) |= φ2
7 (M,β ) |= φ1↔ φ2 iff ((M,β ) |= φ1 and (M,β ) |= φ2) or

iff ((M,β ) 6|= φ1 and (M,β ) 6|= φ2)
8 (M,β ) |= ∀ A v;φ iff (M,β d

v ) |= φ for all d ∈ DA

9 (M,β ) |= ∃ A v;φ iff (M,β d
v ) |= φ for at least one d ∈ DA

For a 0-place predicate symbol p, clause (2) says M |= p iff /0 ∈ I(p). Thus the
interpretation I acts in this case as an assignment of truth values to p. This explains
why we have called 0-place predicate symbols propositional atoms.

Given the restriction on I( .=) in Definition 1.14, clause (2) also says (M,β ) |=
t1

.
= t2 iff valM,β (t1) = valM,β (t2).
For a set Φ of formulas, we use (M,β ) |= Φ to mean (M,β ) |= φ for all φ ∈Φ .
If φ is a formula without free variables, we may write M |= φ since the variable

assignment β is not relevant here.
To prepare the ground for the next definition we explain the concept of extensions

between type hierarchies.

defi:THextention Definition 1.18. A type hierarchy T2 = (TSym2,v2) is an extension of a type hier-
archy T1 = (TSym1,v1), in symbols T1 vT2, if

1. TSym1 ⊆ TSym2
2. v2 is the smallest subtype relation containing v1∪∆ where ∆ is a set of pairs

(S,T ) with T ∈ TSym1 and S ∈ TSym2 \TSym1.

So, new types can only be declared to be subtypes of old types, never supertypes.
Also, ⊥v2 Av2 > for all new types A.

Definition 1.18 forbids the introduction of subtype chains like Av Bv T into the
type hierarchy. However, it can be shown that relaxing the definition in that respect
results in an equivalent notion of logical consequence. We keep the restriction here
since it simplifies reasoning about type hierarchy extensions.

For later reference, we note the following lemma.

lem:THExt Lemma 1.19. Let T2 = (TSym2,v2) be an extension of T1 = (TSym1,v1) withv2
the smallest subtype relation containing v1∪∆ , for some ∆ ⊆ (TSym2 \TSym1)×
TSym1.

Then, for A,B ∈ TSym1, C ∈ TSym2 \TSym1, D ∈ TSym2

1. Av2 B iff Av1 Bitem:THExt-1
2. C v2 A iff T v1 A for some (C,T ) ∈ ∆ .item:THExt-2
3. Dv2 C iff D =C or D =⊥

Proof. This follows easily from the fact that no supertype relations of the form
Av2 C for new type symbols C are stipulated. ut
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def:LogicConsequence Definition 1.20. Let T be a type hierarchy and Σ a signature, φ ∈ FmlT ,Σ a formula
without free variables, and Φ ⊆ FmlT ,Σ a set of formulas without free variables.

1. φ is a logical consequence of Φ , in symbols Φ |= φ , if for all type hierarchies
T ′ with T v T ′ and all T ′-Σ -structures M such that M |= Φ , also M |= φ

holds.
2. φ is universally valid if it is a logical consequence of the empty set, i.e., if

/0 |= φ .
3. φ is satisfiable if there is a type hierarchy T ′, with T v T ′ and a T ′-Σ -

structure M with M |= φ .

The extension of Definition 1.20 to formulas with free variables is conceptually not
difficult but technically a bit involved. The present definition covers however all we
need in this book.

The central concept is universal validity since, for finite Φ , it can easily be seen
that:

• Φ |= φ iff the formula
∧

Φ → φ is universally valid.
• φ is satisfiable iff ¬φ is not universally valid.

The notion of logical consequence from Definition 1.20 is sometimes called su-
per logical consequence to distinguish it from the concept Φ |=T ,Σ φ denoting that
for any T -Σ -structure M with M |= Φ also M |= φ is true.

To see the difference, let the type hierarchy T1 contain types A and B such that
the greatest lower bound of A and B is⊥. For the formula φ1 = ∀ A x;(∀ B y;(x 6= y))
we have |=T1 φ1. Let T2 be the type hierarchy extending T1 by a new type D and
the ordering Dv A, Dv B. Now, |=T2 φ1 does no longer hold true.

The phenomenon that the tautology property of a formula φ depends on symbols
that do not occur in φ is highly undesirable. This is avoided by using the logical
consequence defined as above. In this case we have 6|= φ1.

Theorem 1.21 (Soundness and Completeness Theorem). Let T be a type hierar-thm:FOLcompleteness
chy and Σ a signature, φ ∈ FmlT ,Σ without free variables. The calculus for FOL is
given by the rules in Figures 1.1 and 1.2. Assume that for every type A ∈T there is
a constant symbol of type A′ with A′ v A.

Then:

• if there is a closed proof tree in FOL for the sequent =⇒ φ then φ is univer-
sally valid
i.e., FOL is sound.

• if φ is universally valid then there is a closed proof tree for the sequent =⇒ φ

in FOL.
i.e., FOL is complete.

For the untyped calculus a proof of the sound- and completeness theorem may be
found in any decent text book, e.g.

Gallier87
[Gallier, 1987, Section 5.6].

Giese05
Giese [2005] covers

the typed version in a setting with additional cast functions and type predicates. His
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proof does not consider super logical consequence and requires that type hierarchies
are lower-semi-lattices.

Concerning the constraint placed on the signature in Theorem 1.21, the calculus
implemented in the KeY system takes a slightly different but equivalent approach:
instead of requiring the existence of sufficient constants, it allows one to derive via
the rule ex_unused, for every A ∈ T the formula ∃x(x .

= x), with x a variable of
type A.

def:soundRules Definition 1.22. A rule

Γ1 =⇒ ∆1 Γ2 =⇒ ∆2

Γ =⇒ ∆

of a sequent calculus is called

• sound if whenever Γ1 =⇒ ∆1 and Γ2 =⇒ ∆2 are universally valid so is Γ =⇒ ∆ .
• complete if whenever Γ =⇒ ∆ is universally valid then also Γ1 =⇒ ∆1 and

Γ2 =⇒ ∆2 are universally valid.

For nonbranching rules and rules with side conditions the obvious modifications
have to be made.

An inspection of the proof of Theorem 1.21 shows that if all rules of a calculus
are sound then the calculus itself is sound. This is again stated as Lemma 4.7 in
Section 4.4 in the KeY book devoted to the soundness management of the KeY
system. In the case of soundness also the reverse implication is true: if a calculus is
sound then all its rules will be sound.

The inspection of the proof of Theorem 1.21 also shows that the calculus is com-
plete if all its rules are complete. This criterion is however not necessary, a complete
calculus may contain rules that are not complete.

We skipped the proof of Lemma 1.13 to not interupt the follow of the presenta-
tion. We deliver it here

Proof. Proof of Lemma 1.13:

1. We start with the definition D⊥ = {d ∈D | δ (d)v⊥}. Since ⊥ is the only type
in TSym with ⊥v⊥ and ⊥ is not in the range of δ we get D⊥ = /0.
For the second claim we start again with the definition D> = {d ∈ D | δ (d) v
>}. Since Av> for any type A we get D> = D.

2. Assume A v B. If d ∈ DA then δ (d) v A. Transitivity of the subtype relation
entails δ (d)v B and thus d ∈ DB.

3. If C is the greatest lower bound of A and B we have C v A and C v B and thus
by (2) DC ⊆ DA and DC ⊆ DB. Therefore, DC ⊆ DA∩DB. If d ∈ DA∩DB then
δ (d)v A and δ (d)v B. Thus δ (d)vC and therefore d ∈ DC.
ut
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1.2.4 Digression on Hierarchy Independence

The pupose of this subsection is the investigation of the undesired phenomenon,
mention above, that the tautology property of a formula φ depends on symbols that
do not occur in φ . It is totally unrelated to the rest of the book. Also its significance
is unclear. It is a loose end that we saw no other way to publish. The average reader
will just skip it. The curious reader may read on on his own risk and maybe finds
some use for it.

We use the concept of an abstract type from
Giese05
Giese [2005]. Abstract types are

declared as a subset of the set of all types ATSymv TSym when a type hierarchy is
fixed. In the definition of the semantic domain D we require for all elements m∈DA

of an abstract type A ∈ATSym that there is a non-abstract type B ∈ TSym\ATSym
with Bv A and m ∈ DB.

For the purposes of this section we introduce the terminology.

def:Vocabulary Definition 1.23. A vocabulary V is a pair (T ,Σ) with T = (TSym,ATSym,v) a
type hierarchy and Σ a signature, such that every type A that occurs in the typing of
a function or predicate symbol in Σ occurs in TSym, A ∈ TSym.

def:VocExtension Definition 1.24. A vocabulary V2 = (T2,Σ2) with T2 = (TSym2,ATSym2,v2) is
a simple extension of V1 = (T1,Σ1) with T1 = (TSym1,ATSym1,v1), in symbols
V1 ≤s V2 if

• Σ1 ⊆ Σ2
• TSym1 ⊆ TSym2
• ATSym2∩TSym1 = ATSym1
• For every new A ∈ TSym2 (i.e. A 6∈ TSym1) there is a set anc(A) ⊆ TSym1,
⊥ 6∈ anc(A) of types such that v2 on TSym2 is the least partial order extending
v1 that satiesfies Av2 B for all B ∈ anc(A).

V2 is called an extension of V1, in symbols V1 ≤ V2 if there is a finite sequence of
simple extensions V1 ≤s V 0

1 ≤s . . .≤s V k
1 ≤s V2.

We call V1 a restriction of V2 if V2 is an extension of V1.

lem:POExt Lemma 1.25. Let (P1,≤1) be a partial order, P1 ⊆ P2, and for every p ∈ P2 \P1
there is a set anc(p) ⊆ P1 and ≤2 is the least partial order on P2 that extends ≤1
and satiesfies p≤2 q for all p ∈ P2 and q ∈ anc(p). Then

≤1=≤2 ∩P1×P1

Proof. We will prove that ≤2 can be explicitely defined by

p≤2 q⇔


p≤1 q if p ∈ P1,q ∈ P1
r ≤1 q if p ∈ (P2 \P1),q ∈ P1

and r ∈ anc(p)
p =⊥ if p ∈ P1,q ∈ (P2 \P1)
p = q if p ∈ (P2 \P1),q ∈ (P2 \P1)

(1.1) align:leastPOExt
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The claim of the lemma follows immediately once we have established claim 1.1.
We need to show reflexivity, transitivity and antisymmetric of the relation ≤2

thus defined.
Reflexivity follows directly from the cases p,q ∈ P1 and p,q ∈ P2.
Transitivity Consider p ≤2 q, q ≤2 r. The cases p = q and q = r are trivial. So

we assume from now on p 6= q and q 6= r.
Case p ∈ P1
Subcase q ∈ (P2 \P1)
By definition we get p =⊥ and therefore p =⊥≤2 r in any case.
Subcase q ∈ P1 By definition this yields p ≤1 q. Either r ∈ P1 and q ≤1 r, which
by transitivity of ≤1 also yields p ≤2 r. Or r ∈ (P2 \P1) and q = ⊥. But, then also
p =⊥ and p =⊥≤2 r follows.
Case p ∈ (P2 \P1). p 6= q implies q ∈ P1 and p′ ≤1 q for some p′ ∈ anc(p).
Subcase r ∈ P1 We thus have q ≤1 r, by transitivity of ≤1 this yields p′ ≤1 r and
therefore p≤2 r.
Subcase r ∈ (P2 \P1) In this case we must have q = ⊥, which by p′ ≤1 q also
implies p′ =⊥. But, this is ruled out by the definition of anc.

Antisymmetry Assume q ≤2 p and p ≤2 q. If both p and q are in P1 then p = q
follows from the antisymmetry of ≤1. If both p and q are in (P2 \P1) then p = q
follows by definition of ≤2. If p ∈ P1 and q ∈ (P2 \P1) then we infer
p =⊥ from p≤2 q and
q′ ≤1 p =⊥ for some q′ ∈ anc(q) from q≤2 p.
Thus q′ =⊥, which is impossible. Thus this case cannot arrise. The remaining case
q ∈ P1 and p ∈ (P2 \P1) is handled symmetrically. ut

cor:VocExtProp Corollary 1.26. If V2 = (T2,Σ2) with T2 = (TSym2,ATSym2,v2) is an extension
of V1 = (T1,Σ1) with T1 = (TSym1,ATSym1,v1) then

v1=v2 ∩TSym1×TSym1

Proof. Follows by interated application of Lemma 1.25. ut

Definition 1.24 is modelled after the extension of type hierachies in Java programs
and is rather restrictive.

Example 1.27. If V1 = (T1,Σ1), V2 = (T2,Σ2) with Σ1 = Σ2 = /0. TSym1 =
{⊥,A,B,>}, ATSym1 = /0, and⊥v1 Av1 >,⊥v1 Bv1 >. Furthermore TSym2 =
{⊥,A,B,C,>}, ATSym2 = /0, and ⊥ v2 A v2 >, ⊥ v2 B v2 > and A v2 C v2 B.
Then V2 is not an extension of V1 since we have (A,B) ∈v2 ∩(TSym1×TSym1)
but (A,B) 6∈v1.

Let us modify this example a bit by changing the subtype relation of T1 to ⊥v′1
A v′1 B v′1 >. Still V2 is not an extension of V1. There is no way A v2 C can be
achieved for the new type C.

lem:HIndepSpecialCase Lemma 1.28. Let V2 = (T2,Σ2) with T2 = (TSym2,ATSym2,v2) be an extension
of V1 = (T1,Σ1) with T1 = (TSym1,ATSym1,v1). Assume furthermore that for
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any C ∈ TSym2 \TSym1 the intersection anc(C)∩ (TSym\ATSym1) is a singleton
then

`V φ ⇔ `V2 φ

Proof.
By assumption we may write anc(C) = {anc0(C)} for every C ∈ TSym2 \TSym1.
Note, anc0(C) 6∈ aTypes1.
Part 1 Assume `V φ . Fix an arbitrary V2 structure M2 = (M2,δ2, I2). We need to
show M2 |= φ . We define a V1 structure M1 = (M1,δ1, I1) by

1. M1 = M2,

2. δ1(d) =
{

δ2(d) if δ2(d) ∈ TSym1
anc0(δ2(d)) otherwise

3. I1( f ) = I2( f ), I1(p) = I2(p) for f , p ∈ Σ1.

Note, that the assumption on anc0 make (2) a valid definition.
We observe for all A ∈ TSym1 that

MA
1 = {d ∈M1 | δ1(d)v1 A}
= {d ∈M2 | δ2(d)v1 A,δ2(d) ∈ TSym1} ∪

{d ∈M2 | anc0(δ2(d))v1 A,δ2(d) 6∈ TSym1}
= {d ∈M2 | δ2(d)v2 A,δ2(d) ∈ TSym1} ∪

{d ∈M2 | δ2(d)v2 A,δ2(d) 6∈ TSym1}
= MA

2

(1.2) align:lem:HIndepSpecialCaseMA

This shows that also the definitions I1( f ) = I2( f ) and I1(p) = I2(p) are correct, i.e.,
domain and range of I1( f ) and I1(p) are as they should be.

Next we will show

For all variable assignments β : V Sym→M1 and all V1 terms t
valM1,β (t) = valM2,β (t

(1.3) align:lem:HIndepSpecialCaseT

and

For all variable assignments β : V Sym→M1 and all V1 formulas ψ

|=M1,β ψ iff |=M2,β ψ
(1.4) align:lem:HIndepSpecialCaseF

Both, claims 1.3 and 1.4 can easily be proved by structural induction. The quantifier
case in the proof of 1.4 uses 1.2.

By case assumption, `V φ , we know M1 |= φ . Thus 1.4 yields M2 |= φ , as
desired.
Part 2 Assume `V2 φ . We fix an arbitrary V1 structure M1 = (M1,δ1, I1) with the
intention to show M1 |= φ . The idea is to construct a V2 structure M2 such that M1
is obtained from M2 by the construction described in Part 1. We leave the details to
the reader. The rest of the proof then follows as in Part 1. ut

The examples and Lemma 1.4 show that the perceived problem has to do with ab-
stract types. The next lemma investigates an approach to get along without abstract
types.
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lem:NoAbstractTypes Lemma 1.29. Let V = (T ,Σ) be a vocabulary with T = (TSym,ATSym,v). Let
V1 by another vocabulary that differs from V only by the fact that no type is abstract,
i.e. V1 = (T1,Σ1) with T1 = (TSym1,ATSym1,v1), such that Σ1 = Σ , TSym1 =
TSym, Av1 B⇔ Av B and ATSym1 = /0.

For any type Ai ∈ ATSym let Bi
1, . . . ,B

i
ni

be all non-abstract subtypes of Ai, for
0≤ i < k.

Let F i denote the variablefree formula ∀Ai xi.
∨ni

j=0∃Bi
j y j.xi .

= y j and F =∧k
i=0 F i.
A V1 structure (M,δ , I) is a V structure if and only if V1 |= F

Proof. If (M,δ , I) is a V structure then it is also a V1 structure. Since the range of
δ is disjoint from ATSym we see that V1 |= F i for all 0≤ i < k.

If, on the other hand, (M,δ , I) is a V1 structure we could have δ (d) = Ai for
some d ∈M and Ai ∈ ATSym which would prevent it from being a V structure. We
will argue that because of (M,δ , I) |= F i this cannot happen. From (M,δ , I) |= F i

we read off a non-abstract subtype Bi
j of Ai and an element e ∈MBi

j with d = e. By

definition of MBi
j we get δ (e)v Bi

j @ Ai and thus δ (d) = δ (e) 6= Ai. ut

cor:NoAbstractTypes Corollary 1.30. With the notation from Lemma 1.29 and any V formula φ we have

`V φ ⇔ F `V1 φ

Proof. Follows easily from Lemma 1.29.

End of the Digression on Hierarchy Independence

1.2.5 Digression on Completeness Proof
subsect:CompletenessProof

The proof of Theorem 1.21 proceeds by three lemmata. Lemma 1.33 is devoted to
the proof of soundness and Lemma 1.34 covers completeness. Lemma 1.31 is need
as a preparatory step for both.

Lemma 1.31. All rules in Figures 1.1 and 1.2 are sound and completelemma:soundCompleteRules

Proof of Lemma 1.31

We list all rules and the proof obligation for their soundness and completeness.
The proofs are either trivial or totally trivial. In the cases impLeft, allRight, allLeft,
exLeft, and eqDynamicSort we include the details. The correctness proof of the last
rule is particularly demanding.

andLeft
Γ ,φ ,ψ =⇒ ∆

Γ ,φ ∧ψ =⇒ ∆

proof obligation:
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Γ ∧φ ∧ψ →

∨
∆ is universally valid

iff∧
Γ ∧ (φ ∧ψ)→

∨
∆ is universally valid

andRight
Γ =⇒ φ ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ψ,∆
proof obligation:

(
∧

Γ →
∨

∆ ∨φ) and (
∧

Γ →
∨

∆ ∨ψ) are universally valid
iff∧

Γ →
∨

∆ ∨ (φ ∧ψ) is universally valid

orRight
Γ =⇒ φ ,ψ,∆

Γ =⇒ φ ∨ψ,∆
proof obligation:

(
∧

Γ →
∨

∆ ∨φ ∨ψ) is universally valid
iff
(
∧

Γ →
∨

∆ ∨ (φ ∨ψ)) is universally valid

orLeft
Γ ,φ =⇒ ∆ Γ ,ψ =⇒ ∆

Γ ,φ ∨ψ =⇒ ∆

proof obligation:

(
∧

Γ ∧φ →
∨

∆) and (
∧

Γ ∧ψ →
∨

∆) are universally valid
iff
(
∧

Γ ∧ (φ ∨ψ)→
∨

∆) is universally valid

impRight
Γ ,φ =⇒ ψ,∆

Γ =⇒ φ → ψ,∆
proof obligation:

(
∧

Γ ∧φ →
∨

∆ ∨ψ) is universally valid
iff
(
∧

Γ →
∨

∆ ∨ (φ → ψ)) is universally valid

impLeft
Γ =⇒ φ ,∆ Γ ,ψ =⇒ ∆

Γ ,φ → ψ =⇒ ∆

proof obligation:

(
∧

Γ →
∨

∆ ∨φ) and (
∧

Γ ∧ψ →
∨

∆) are universally valid
iff
(
∧

Γ ∧ (φ → ψ)→
∨

∆) is universally valid

Proof. ⇓:
Assume that

∧
Γ →

∨
∆ ∨ φ and

∧
Γ ∧ψ →

∨
∆ are both universally valid. To
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prove that
∧

Γ ∧ (φ → ψ)→
∨

∆ is universally valid we fix an arbitrary first-order
structure M for a type hierarchy T and signature Σ such that the three formulas
under consideration are contained in FmlT ,Σ . We assume M |=

∧
Γ ∧ (φ → ψ)

and need to show M |=
∨

∆ . In particular, we have M |= φ → ψ at our disposal.
There are two cases to be considered. In the frist we have M |= ¬φ . By validity
of
∧

Γ →
∨

∆ ∨ φ we get M |=
∨

∆ and are finished. In the second case we have
M |= ψ . Now, we obtain M |=

∨
∆ from the assumed validity of

∧
Γ ∧ψ →

∨
∆ .

⇑:
We assume that

∧
Γ ∧ (φ → ψ) →

∨
∆ is universally valid and fix an arbitrary

first-order structure M for a type hierarchy T and signature Σ such that the three
formulas under consideration are contained in FmlT ,Σ . If M |= ¬

∧
Γ then M

trivially satisfies the two formulas in the succedent of the rule. So we assume from
now on M |=

∧
Γ .Now, if M |= φ then we first obtain obviously M |=

∨
∆ ∨φ , as

desired. We still need to show M |=
∧

Γ ∧ψ →
∨

∆ . So we assume M |= ψ . We
are now in the situation that M |=

∧
Γ ∧ (φ → ψ). Since

∧
Γ ∧ (φ → ψ)→

∨
∆ is

universally valid this entails M |=
∨

∆ and we are finished in this case.
It remains to deal with M |= ¬φ . Since we have M |=

∧
Γ ∧ (φ → ψ) in this case,

the assumption gives us immediately M |=
∨

∆ . From the we see that again M
satisfies both formuluas in the conclusion. ut

notLeft
Γ =⇒ φ ,∆

Γ ,¬φ =⇒ ∆

proof obligation:

(
∧

Γ →
∨

∆ ∨φ) is universally valid
iff
(
∧

Γ ∧¬φ →
∨

∆) is universally valid

notRight
Γ ,φ =⇒ ∆

Γ =⇒¬φ ,∆
proof obligation:

(
∧

Γ ∧φ →
∨

∆) is universally valid
iff
(
∧

Γ →
∨

∆ ∨¬φ) is universally valid

allRight
Γ =⇒ [x/c](φ),∆

Γ =⇒∀x.φ ,∆
with c :→ A a new constant, if x:A

proof obligation:

(
∧

Γ →
∨

∆ ∨ [x/c](φ)) is universally valid
iff
(
∧

Γ →
∨

∆ ∨∀x.φ) is universally valid

Proof. We assume first that (
∧

Γ →
∨

∆ ∨∀x.φ) is universally valid and consider
an arbitrary structure M satisfying M |=

∧
Γ with the aim of showing M |=

∨
∆ ∨
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[x/c](φ). By assumption we get immediately M |=
∨

∆ ∨∀x.φ). If M |=
∨

∆ is
true we are done. If on the other hand M |= ∨∀x.φ) is the case we also get M |=
[x/c](φ).

Now, assume that (
∧

Γ →
∨

∆ ∨ [x/c](φ)) is universally valid and consider an
arbitrary structure M satisfying M |=

∧
Γ with the aim of showing M |=

∨
∆ ∨

∀x.φ). If M |=
∨

∆ is true we are again done. It remains to consider the case M |=
¬
∨

∆ . Let M ′ be a structure that differs from M only in the interpetation of the
new constant c. Since c is new we still have M ′ |=

∧
Γ and M ′ |= ¬

∨
∆ . By the

assumed universall validity this implies M ′ |= [x/c](φ). This argument suffices to
show M |= ∀x.φ). ut

allLeft
Γ ,∀x.φ , [x/t](φ) =⇒ ∆

Γ ,∀x.φ =⇒ ∆
with t ∈ TrmA′ ground, A′ v A, if x:A

proof obligation:

(
∧

Γ ∧∀x.φ ∧ [x/t](φ)→
∨

∆) is universally valid
iff
(
∧

Γ ∧∀x.φ →
∨

∆) is universally valid

Proof. Assume that (
∧

Γ ∧∀x.φ ∧ [x/t](φ)→
∨

∆) is universally valid and consider
an arbitrary structure M satisfying M |=

∧
Γ ∧∀x.φ with the aim of showing M |=∨

∆ . Since M |= ∀x.φ implies M |= [x/t](φ) we can make use of the assumption
to obtain M |=

∨
∆ as desired.

The reverse implication is trivial. ut

exLeft
Γ , [x/c](φ) =⇒ ∆

Γ ,∃x.φ =⇒ ∆
with c :→ A a new constant, and x:A.

proof obligation: ∧
Γ ∧ [x/c](φ)→

∨
∆ is universally valid

iff∧
Γ ∧∃x.φ →

∨
∆ is universally valid

Proof. Assume
∧

Γ ∧ ∃x.φ →
∨

∆ is universally valid and consider an arbitrary
structure M satisfying M |= Γ ∧ [x/c](φ) with the aim of showing M |=

∨
∆ .

Since M |= [x/c](φ) entails M |= ∃x.φ we may use the assumption to conclude
M |=

∨
∆ as desired.

Now assume that
∧

Γ ∧ [x/c](φ)→
∨

∆ is universally valid and consider an arbi-
trary structure M satisfying M |=

∧
Γ ∧∃x.φ with the aim of showing M |=

∨
∆ .

Let a ∈ M be an element that serves as a witness for the existential quantifier. Let
M ′ that differs from M only in the interpretation of the new constant c which we
define in M ′ to be a. Since c is a new constant we still have M ′ |=

∧
Γ . Since

M ′ |= [x/c](φ) is true, we obtain from the assumption M ′ |=
∨

∆ . Since c was a
new constant this implies also M |=

∨
∆ , as desired. ut
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exRight
Γ =⇒∃x.φ , [x/t](φ),∆

Γ =⇒∃x.φ ,∆
with t ∈ TrmA′ ground, A′ v A, and x:A.

proof obligation:∧
Γ →

∨
∆ ∨∃x.φ ∨ [x/t](φ) is universally valid

iff∧
Γ →

∨
∆ ∨∃x.φ is universally valid

close
∗

Γ ,φ =⇒ φ ,∆
proof obligation: ∧

Γ ∧φ →
∨

∆ ∨φ is universally valid

closeFalse
∗

Γ , false =⇒ ∆

proof obligation: ∧
Γ ∧ false→

∨
∆ is universally valid

closeTrue
∗

Γ =⇒ true,∆
proof obligation: ∧

Γ →
∨

∆ ∨ true is universally valid

eqLeft
Γ , t1

.
= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ , t1
.
= t2, [z/t1](φ) =⇒ ∆

if σ(t2)v σ(t1)

proof obligation:∧
Γ ∧ t1

.
= t2∧ [z/t1](φ)∧ [z/t2](φ)→

∨
∆ is universally valid

iff∧
Γ ∧ t1

.
= t2∧ [z/t1](φ)→

∨
∆ is universally valid

eqRight
Γ , t1

.
= t2 =⇒ [z/t2](φ), [z/t1](φ),∆
Γ , t1

.
= t2 =⇒ [z/t1](φ),∆

if σ(t2)v σ(t1)

proof obligation:

(
∧

Γ ∧ t1
.
= t2→

∨
∆ ∨ [z/t1](φ)∨ [z/t2](φ)) is universally valid

iff
(
∧

Γ ∧ t1
.
= t2→

∨
∆ ∨ [z/t1](φ)) is universally valid

eqSymmLeft
Γ , t2

.
= t1 =⇒ ∆

Γ , t1
.
= t2 =⇒ ∆

proof obligation:
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Γ ∧ t2

.
= t1→

∨
∆ is universally valid

iff∧
Γ ∧ t1

.
= t2→

∨
∆ is universally valid

eqClose
∗

Γ =⇒ t .
= t,∆

proof obligation: ∧
Γ →

∨
∆ ∨ t .

= t is universally valid

eqDynamicSort
Γ , t1

.
= t2,∃x(x

.
= t1∧ x .

= t2) =⇒ ∆

Γ , t1
.
= t2 =⇒ ∆

if σ(t1) and σ(t2) are incomparable,
the sort C of x is new and satisfies
C @ σ(t1) and C @ σ(t2)

Proof. To prove soundness of eqDynamicSort we assume that
∧

Γ ∧t1
.
= t2∧∃x.(x

.
=

t1∧ x .
= t2)→

∨
∆ is universally valid for type hierarchy TC and need to show that∧

Γ ∧ t1
.
= t2→

∨
∆ is is universally valid for the hierarchy T .

The type hierarchy TC = (TSym∪ {C},vC) is an extension of the hierarchy
T = (TSym,v) in the sense of Definition 1.18 , with vC the least subtype relation
containing v ∪ {(C,σ(t1)),(C,σ(t2))}.

Assume that
∧

Γ ∧ t1
.
= t2 ∧∃x.(x

.
= t1 ∧ x .

= t2)→
∨

∆ is universally valid for
type hierarchy TC. To prove universal validity of

∧
Γ ∧ t1

.
= t2 →

∨
∆ we need to

consider a type hierarchy T 1 = (TSym1,v1) that is an arbitrary extension of T =
(TSym,v) and an arbitrary (T 1,Σ)-structure M = (M,δ , I) satisfying M |= Γ ∧
t1

.
= t2 with the aim of showing M |=

∨
∆ . Let T be the dynamic type of tM1 = tM2 ,

i.e., δ (tM1 ) = δ (tM2 ) = T , which obviously satisfies T v σ(t1) and T v σ(t2). Set
T 1

C = (TSym1∪ {C},v1
C) with v1

C be the smallest subtype relation containing v1

∪ {(C,σ(t1)),(C,σ(t2))}. We need a further extension T 2 =(TSym1∪ {C,C2},v2

) of T 1
C , where v2 is the smallest subtype relation containing v1

C ∪∆ with ∆ =
{(C2,C),(C2,T )}.

We proceed with main proof by constructing a (T 2,Σ)-structure M 2 =(M,δ 2, I)
that differs from M only in δ 2 which is given by

δ
2(o) =

{
C2 if o = tM1 = tM2
δ (o) otherwise .

This leads to M 2 |= ∃x.(x .
= t1∧x .

= t2) – if we remember that x is a variable of the
type C and C2 vC.

The crucial property of the type hierarchy T 2 is

for any o ∈M and any A ∈ TSym1
δ (o)v1 A⇔ δ 2(o)v2 A . (1.5) align:C2ext

Here are the arguments why (1.5) is true: In case o 6= tM1 we have δ 2(o) = δ (o) ∈
TSym1 and δ (o)v1 A⇔ δ (o)v2 A by item 1 of Lemma 1.19. In case o = tM1 = tM2
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we have δ (o) = T and δ 2(o) =C2. By item 2 of Lemma 1.19, C2 v2 A is equivalent
to the disjunction of T v1

C A or C v1
C A. Again by Lemma 1.19, this is equivalent

to T v1 A or σ(t1) v1 A or σ(t2) v1 A. Since σ(t1),σ(t2) v T , this is equivalent
to T v1 A. In total, we have shown (1.5) by proving that C2 v2 A is equivalent to
T v1 A.

We need to convince ourselves that M 2 |= Γ ∧ t1
.
= t2 is still true. We will prove

the following auxiliary statement:

Let φ be an arbitrary (T ,Σ)-formula, β a variable assignment, then
(M ,β ) |= φ ⇔ (M 2,β ) |= φ

(1.6) align:Cext

The proof of (1.6) proceeds by induction on the complexity of φ . The only non-
trivial steps are the induction steps for quantifiers. So assume that the claim is true
for φ(x1, . . . ,xn)

1 and we try to establish it for (∃x1.φ)(x2, . . . ,xn), with x1 a variable
of type A. By choice of φ , the type A is different from C and C2.

(M ,β ) |= ∃x1.φ ⇔ (M ,β o
x1
) |= φ(x1) for o ∈M with δ (o)v A

⇔ (M 2,β o
x1
) |= φ(x1) induction hypothesis

⇔ (M 2,β ) |= ∃x1.φ by (1.5)

Now, we have established M 2 |=Γ ∧t1
.
= t2. From the assumption we obtain M 2 |=∨

∆ , which entails M |=
∨

∆ by another appeal to (1.6), as desired. ut

eqRef
Γ , t .

= t =⇒ ∆

Γ =⇒ ∆

proof obligation: ∧
Γ ∧ t .

= t→
∨

∆ is universally valid
iff∧

Γ →
∨

∆ is universally valid

For the soundness proof we need the following auxiliary definition

defi:ProofTreeHeight Definition 1.32. Let T be a finite proof tree. For every node n in T we define its
height h(n) recursively by

1. h(n) = 0 if n is a leaf.
2. h(n) = max{h(n1),h(n2)}+1 if n1,n2 are the children of n. If there is only one

child n1 of n this reduces, of course, to h(n) = h(n1)+1.

lemma:FOLSoundness Lemma 1.33. If T is a closed proof tree and φ a label of a node in T , then φ is
universally valid.

1 i.e., a formula with at most the free variables x1, . . . ,xn
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Proof of Lemma 1.33

Let S be the sequent that labels node n in T . The lemma is proved by induction on
h(n). If h(n) = 0 then S is the premise of a closing rule and by Lemma 1.31 S is
universally valid. If h(n)> 0 and n1, n2 are the children of n, then h(ni)< h(n). So
we know by the indcution hypothesis that the sequents S1, S2 labeling n1 and n2 are
universally valid. Now, Lemma 1.31 yields universal validity of S. ut

lemma:FOLCompleteness Lemma 1.34. Let S = Γ =⇒ ∆ be a sequent with Γ ,∆ ⊂ FmlT ,Σ for some type
hierachy T and signature Σ .
If S is universally valid then there is a closed proof tree with root labeled by S.

Proof of Lemma 1.34

The proof proceeds by contradiction. Assume there is no closed proof tree with root
labeled by S. Let T be a proof tree with root labeled by S such that all rules have been
exhaustively applied, but T is not closed. Because of the rules allLeft and exRight
T is necessarily infinite. By an appeal to König’s Lemma there is an infinite branch
B of T that is not closed.

Let H0 be the set of all ground terms. We define the relation ∼B on H0 by

t1 ∼B t2 iff t1 = t2 or
there is a sequent Γ =⇒ ∆ in B with t1

.
= t2 ∈ Γ

The relation ∼B is an equivalence relation. Reflexivity is assured by definition.
If t1 ∼B t2 with t1

.
= t2 ∈ Γ and Γ =⇒ ∆ ∈ B, then somewhere in B the rule

eqSymmLeft must have been applied since we assume exhaustive rule application.
Thus there will be a sequent Γ ′=⇒∆ ′ ∈B with t2

.
= t1 ∈Γ ′ and we arrive at t2∼B t1.

It remains to show transitivity. We start from t1 ∼B t2 and t2 ∼B t3. By definition of
∼B there are sequents Γ1 =⇒∆1 and Γ2 =⇒∆2 in B with t1

.
= t2 ∈Γ1 and t2

.
= t3 ∈Γ2.

Since there is no rule that drops an equality in the antecedent, only the arguments
may be swaped, there will be a sequent Γ ′ =⇒ ∆ ′ in B such that t1

.
= t2 or t2

.
= t1

and at the same time t2
.
= t3 or t3

.
= t2 occur in Γ ′. We consider each case separately.

1. t1
.
= t2 and t2

.
= t3

2. t1
.
= t2 and t3

.
= t2

3. t2
.
= t1 and t2

.
= t3

4. t2
.
= t1 and t3

.
= t2

In case (1) we use eqLeft to replace the lefthand side t2 of the second equation by
its righthand side in the first equation and obtain t1

.
= t3.

In case (3) we replace, using eqLeft, the lefthand side t2 of the first equation by
its righthand side in the second equation and obtain t1

.
= t3.

In case (4) replace the lefthand side t2 of the first equation by its righthand side in
the second equation and obtain t3

.
= t1. Another application of eqSymmLeft yields

t1
.
= t3.
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Case (2) is the most involved. By exhaustiveness of B we know that eqSymmLeft
will be applied again to both equations in focus. If it is first applied to the first equa-
tion we obtain the situation in case (4). If it is first applied to the second equation
we obtain case (1).

Thus in any case t1 ∼B t3 follows and transitivity is established. In total we know
now that ∼B is an equivalence relation.

Next we aim to show that ∼B is also a congruence relation, i.e., ti ∼B t ′i for
1 ≤ i ≤ n implies f (t1, . . . , tn) ∼B f (t ′1, . . . , t

′
n) and q(t1, . . . , tn)↔ q(t ′1, . . . , t

′
n) for

any n-place function symbol f and n-place predicate symbol q. For simplicity we
only present that case of a unary function symbol f . We need to show f (t)∼B f (t ′)
from t ∼B t ′. We first consider the case that σ(t) and σ(t ′) are comparable, e.g.,
σ(t ′)v σ(t). By assumption there is a sequent Γ =⇒ ∆ in branch B with t .

= t ′ ∈Γ .
From the argument given above, we know that there is also sequent Γ1 =⇒ ∆1 on B
with f (t) .

= f (t) ∈ Γ1 and t .
= t ′ ∈ Γ1. By rule eqLeft we obtain a sequent Γ2 =⇒ ∆2

on B with f (t) .
= f (t ′) ∈ Γ2, and thus f (t)∼B f (t ′). It remains to deal with the case

that σ(t) and σ(t ′) are incomparable. Then rule eqDynmicSort applies and yields a
sequent Γ3 =⇒ ∆3 on B with t .

= t ′ ∈ Γ3 and also ∃x(x .
= t ∧ x .

= t ′) ∈ Γ3 with x a
variable of the new type C, with Cv σ(t) and Cv σ(t ′). By exLeft there is a Skolem
symbol sk of type C with sk ∼B t and sk ∼B t ′. By the comparable types case of the
congruence property already established we obtain f (sk)∼B f (t) and f (sk)∼B f (t ′)
in total f (t) ∼B f (t ′) as desired. The case of arbitrary n-place function symbols is
only marginally more complicated. The congruence property for predicate symbols
follows along the same line, starting from the fact that there is a sequent Γ =⇒ ∆

on B with (p(t)↔ p(t ′)) ∈ Γ .
By [t]B for t ∈ H0 we denote the equivalence of t with respect to ∼B, i.e., [t]B =

{s ∈ H0 | t ∼B s}.
H = {[t]B | t ∈ H0}

Next we need to decide what (dynamic) type an element [t]B should have in the
structure to be constructed. We call an equivalence class [t]B typed if there is a type
T0 ∈ T such that there is an term t0 ∈ [t]B with σ(t0) = T0 and for all t ′ ∈ [t]B the
subtype relation T0 v σ(t ′) holds true. For every equivalence class [t]B that is not
typed we introduce a new type constant T[t] and set

∆ = {T[t] | [t]B ∈ H is not typed}
∆R = {T[t] v σ(t ′) | t ′ ∈ [t]B and T[t] ∈ ∆}

The type hierarchy T ′ = (TSym′,v′) extending T = (TSym,v) is given by
TSym′ = TSym∪∆

v′ = transitive closure of v ∪∆R

Obviously, T vT ′.
We are now ready to define a first-order (T ′,Σ)-structure M = (H,δ , I).
The (dynamic) typing function is given by
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δ ([t]B) =
{

T0 if [t]B is typed by T0
T[t] the new type constant, otherwise

For any n-place function symbol f we set

I( f )([t1]B, . . . , [tn]B) = [ f (t1, . . . , tn)]B

For this to be an unambiguous definition we need to show (we only present the
case n = 1, which can easily be generalized) that t ∼B s implies f (t) ∼B f (s). If
t ∼B s then there is a sequent Γ , t .

= s =⇒ ∆ in B. By eqRef we also find a sequent
Γ , t .

= s, f (t) .
= f (t) =⇒ ∆ in B. Using rule eqLeft we see that a sequent Γ ′, f (s) .

=
f (t) =⇒ ∆ ′ occurs in B. This shows f (t)∼B f (s).

For any n-place predicate symbol p we set

I(p) = {(t1]B, . . . , [tn]B) | a sequent Γ , p([t1, . . . , tn) =⇒ ∆ occurs in B}

Again we have to argue that this definition is unambiguous. We do this again for the
special case n = 1. The generalization to arbitrary n is left as an easy exercise to the
reader. If Γ , p(t) =⇒ ∆ occurs in B and t ∼B s we need to show that also a sequent
Γ ′, p(s) =⇒ ∆ ′ ocurs in B. We observe first that there is no rule that removes or
changes an atomic formula occuring in a sequent. Even in eqLeft and eqRight the
substituted formula is added. Therefore we will have a sequent Γ ′′, t .

= s, p(t) =⇒
∆ ′′ in B. An application of eqLeft now completes the argument.

This completes the definition of the structure M = (H,δ , I).

I(t) = [t]b for every ground term t. (1.7) termInM

For 0-place function symbols c claim (1.7) is just the defintion of I(c). The rest
of the claim follows by an easy induction on the structural complexity of t.

The next phase in the proof of Lemma 1.34 consists in the verification of the
claim

M |=
∧

Γ ∧
∧

F∈∆

¬F for all sequents s = Γ =⇒ ∆ in B (1.8) ModelpropertyOfM

The proof of claim (1.8) is reduced to the following

For every formula φ

if there is Γ =⇒ ∆ ∈ B with φ ∈ Γ then M |= φ

if there is Γ =⇒ ∆ ∈ B with φ ∈ ∆ then M 6|= φ

(1.9) ModelpropertySingleFml

Claim (1.9) is proved by induction on the structural complexity n(φ) of φ If
n(φ) = 0 then there φ is an atomic formula or an equation.

For an atomic formula p(t̄) ∈ Γ we know by definition of M that M |= p(t̄).
Now, consider p(t̄) ∈ ∆ . If M |= p(t̄) then there must by definition of M be a
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sequent Γ ′ =⇒ ∆ ′ in B with p(t̄) ∈ Γ ′. Since atomic formulas never get removed
we must have either p(t̄) ∈ ∆ and p(t̄) ∈ Γ or p(t̄) ∈ ∆ ′ and p(t̄) ∈ Γ ′. In both
cases the branch B could be closed, contrary to assumption. Thus we must have
M |= ¬p(t̄) for all p(t̄) ∈ ∆ .

For t1
.
= t2 ∈ Γ we get t1 ∼B t2 by definition of ∼B. Thus [t1]B = [t2]B which

directly yields M |= t1
.
= t2.

For t1
.
= t2 ∈ ∆

The inductive step n(φ)> 0 is split into a number of cases.
Case 1 ¬φ in Γ .

Since branch B is assumed to be exhausted rule notLeft will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ∆ ′. By induction hypothesis we know
M 6|= φ thus M |= ¬φ .

Case 2 ¬φ in ∆ .
Since branch B is assumed to be exhausted rule notRight will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φΓ ′. By induction hypothesis we know
M |= φ thus M 6|= ¬φ .

Case 3 φ1∧φ2 in Γ .
Since branch B is assumed to be exhausted rule andLeft will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ1,φ2Γ ′. By induction hypothesis we
know M |= φ1 and M |= φ2 thus M 6|= φ1∧φ2.

Case 4 φ1∧φ2 in ∆ .
Since branch B is assumed to be exhausted rule andRight will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ1∆ ′ or φ2∆ ′. By induction hypothesis
we know M 6|= φ1 or M 6|= φ2 thus in any case M 6|= φ1∧φ2.

Case 5 φ1∨φ2 in Γ .
Since branch B is assumed to be exhausted rule orLeft will have been applied. There
is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ1Γ ′ or φ2Γ ′. By induction hypothesis we
know M |= φ1 or M |= φ2 thus in total M |= φ1∨φ2.

Case 6 φ1∨φ2 in ∆ .
Since branch B is assumed to be exhausted rule orRight will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ1,φ2∆ ′. By induction hypothesis we
know M 6|= φ1 and M 6|= φ2 thus in total M 6|= φ1∨φ2.

Case 7 φ1→ φ2 in Γ .
Since branch B is assumed to be exhausted rule impLeft will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ1 ∈ ∆ ′ or φ2 ∈ Γ ′. By induction hy-
pothesis we know M 6|= φ1 or M |= φ2 thus in any case M |= φ1→ φ2.

Case 8 φ1→ φ2 in ∆ .
Since branch B is assumed to be exhausted rule impRight will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with φ1 ∈ Γ ′ and φ2 ∈ ∆ ′. By induction
hypothesis we know M |= φ1 and M 6|= φ2 thus in any case M 6|= φ1→ φ2.

Case 9 ∃x.φ in Γ .
Since branch B is assumed to be exhausted rule exLeft will have been applied. There
is thus a sequent Γ ′=⇒∆ ′ in B with [x/c]φ ∈Γ ′ . By induction hypothesis we know
M |= [x/c]φ and thus also M |= ∃x.φ .
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Case 10 ∃x.φ in ∆ .
Since branch B is assumed to be exhausted rule exRihgt will have been applied for
every ground term t. For any ground term t there is thus a sequent Γ ′ =⇒ ∆ ′ in
B with [x/t]φ ∈ ∆ ′ . By induction hypothesis we know M 6|= [x/t]φ for all such t.
Since all elements in the universe of M are of the form [t]B for a ground term t we
get M 6|= ∃x.φ .

Case 11 ∀x.φ in Γ .
Since branch B is assumed to be exhausted rule allLeft will have been applied for
every ground term t. For any ground term t there is thus a sequent Γ ′ =⇒ ∆ ′ in
B with [x/t]φ ∈ Γ ′ . By induction hypothesis we know M |= [x/t]φ for all such t.
Since all elements in the universe of M are of the form [t]B for a ground term t we
get M |= ∀x.φ .

Case 12 ∀x.φ in ∆ .
Since branch B is assumed to be exhausted rule allRight will have been applied.
There is thus a sequent Γ ′ =⇒ ∆ ′ in B with [x/c]φ ∈ ∆ ′ . By induction hypothesis
we know M 6|= [x/c]φ and thus also M 6|= ∀x.φ .

This completes the proof of claim (1.9) and thus also of claim (1.8).
Since any branch necessarily contains the root node we have S ∈ B and by claim

(1.8) M 6|= S which contradicts the assumed univeral validity of sequent S. Thus
the assumption that there is no closed proof tree with root labeled by S has been
refuted. This, finally, completes the proof of Lemma 1.34 and thus the proof of
Theorem 1.21.

Here are some closing remarks. Lemma 1.31 states that all rules of the calculus
are sound and complete. Soundness of rules was explicitely used in the soundness
proof of the calculus, proof of Lemma 1.33. On the other hand, in the proof of
the completeness Lemma 1.34, no reference to Lemma 1.31 or the completeness of
rules was made. So, what is the significance of rules to be complete? The rule

orLeftIncompl
Γ ,φ =⇒ ∆

Γ ,φ ∨ψ =⇒ ∆

is sound but not complete. If we apply it during proof search, from bottom to top,
we might be lucky and be able to close the proof. Or, we might fail and would have
to backtrack and apply the other half of the orLeft rule. This is the significance of
complete rules, they always lead in the right direction and need never to be recon-
sidered.

Finally we come back to the discussion, already aluded to after Figure 1.2, of the
differences between the calculus presented in these notes and the calculus imple-
mented in the KeY system. Since the later contains less rules for a more restricted
language soundness follows directly from Lemma 1.33. There is no easy argument
that the completeness of the implemented calculus follows from Lemma 1.34. The
best way is to look again in the details of the proof of Lemma 1.34 and observe that
the rule eqDynamicSort is only used when an equation t1

.
= t2 occurs with the types

of t1, t2 being incompatibly. In the implemented calculus thus is not allowed and
rule eqDynamicSort is thus not needed.
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There is another difference between the two calculi that best be discussed here,
although a syntax extension is involved that will onlylater be introduced in Fig-
ure 1.3. The provisions σ(t1) v σ(t2) in eqLeft and σ(t2) and σ(t1) in eqRight
are relaxed to [z/t2](φ), repsectively [z/t1](φ) is well-typed. The problem with the
example presented earlier persists. We recall the example with two types A 6= B
with B v A, two constant symbols a : → A and b : → B, and a unary predicate
p(B). Applying eqLeft with the relaxed restriction on the sequent b .

= a, p(b) =⇒
would result in b .

= a, p(b), p(a) =⇒ with p(a) ill-typed. The calculus presented
in these notes would simply not apply rule eqLeft in this case. The calculus im-
plemented in the KeY system would automatically introduce a cast and result in
b .
= a, p(b), p(castB(a)) =⇒. Unfortunately, this is not explicit in the rules but part

of the rule applications formalism. Since with this trick more rules are available
then without it completeness is not an issue. On the other hand it can be easily seen
that this implicit rule extension is sound. We will demonstrate the argument with the
above example. We start with castB(b)

.
= castB(b) by eqReflLeft. From b .

= a we get
by eqLeft castB(b)

.
= castB(a) and by axiom (Ax-C) (see Figure 1.8) b .

= castB(a).
Now, rule eqLeft applied to b .

= a, p(b) yields p(castB(a)). As a derived rule from
a set of sound rules the implicit rule is also sound. We trust that the reader knows
how to contruct the general argument from the given example.

End of Digression on Completeness Proof

1.2.6 Digression On Ill-typed Formulas

This is another loose end totally unrelated to other parts of this technical report. But,
I find it an interesting observation.

The rule eqLeft in Figure 1.2 is only sound with the side condition [z/t2](φ) is
well-typed. More precisely, if this side condition is dropped formulas can be de-
rived that are not welltyped, i.e. are not formulas at all. In this subsection we try to
investigate how serious this is. Can this lead to an inconsistent logic?

Let Σ be a signature for a given type hierarchy T . By Σ⊥ we denote the signature
for the type hierarchy {⊥} that differs from Σ only in the typing of the function and
relation symbols. Since there is only one type the typing in Σ⊥ is obvious. It amounts
to an untyped signature. Note, as far as the syntax is concerned there is no difference
between (T ,Σ) formulas and ({⊥},Σ⊥) formulas.

By `Σ we denote the derivability relation for (T ,Σ) formulas. Likewise `⊥
stands for the derivability relation for ({⊥},Σ⊥) formulas. By `0

Σ
we denote the

derivability relation for (T ,Σ) formulas when all typing side conditions in the rules
(taclets) are ignored. It is `0

Σ
that we want to investigate. For this it suffices to

observe that `0
Σ

coincides with `⊥. Since we know that `⊥ is sound, `0
Σ

is also
sound.



1.3. Extended First-Order Logic 31

Thus we conclude, that dropping the typing side conditions in the proof rules
allows to derive formulas that most likely will not help towards closing the proof,
but soundness is not compromised.

End Of Digression On Ill-typed Formulas

1.3 Extended First-Order Logic
sec02:ExtFOL

In this section we extend the Basic First-Order Logic from Section 1.2. First we turn
our attention in Subsection 1.3.1 to an additional term building construct: variable
binders. They do not increase the expressive power of the logic, but are extremely
handy.

An issue that comes up in almost any practical use of logic, are partial functions.
In the KeY system, partial functions are treated via underspecification as explained
in Subsection 1.3.2. In essence this amounts to replacing a partial function by all its
extensions to total functions.

1.3.1 Variable Binders
subsec02:VarBinders

This subsection assumes that the type int of mathematical integers, the type LocSet
of sets of locations, and the type Seq of finite sequences are present in TSym. For
the logic JFOL to be presented in Subsection 1.4 this will be obligatory.

A typical example of a variable binder symbol is the sum operator, as in Σ n
k=1 k2.

Variable binders are related to quantifiers in that they bind a variable. The KeY sys-
tem does not provide a generic mechanism to include new binder symbols. Instead
we list the binder symbols included at the moment.

A more general account of binder symbols is contained in the doctoral thesisUlbrich13
[Ulbrich, 2013, Subsection 2.3.1]. Binder symbols do not increase the expressive
power of first-order logic: for any formula φb containing binder symbols there is a
formula φ without such that φb is universally valid if and only if φ is, see

Ulbrich13
[Ulbrich,

2013, Theorem 2.4]. This is the reason why one does not find binder symbols other
than quantifiers in traditional first-order logic text books.

Definition 1.35 (extends Definition 1.3).

4. If vi is a variable of type int, b0, b1 are terms of type int not containing vi and s
is an arbitrary term in Trmint, then bsum{vi}(b0,b1,s) is in Trmint .

5. If vi is a variable of type int, b0, b1 are terms of type int not containing vi and s
is an arbitrary term in Trmint , then bprod{vi}(b0,b1,s) is in Trmint .

item:infUnionDefbinder 6. If vi is a variable of arbitrary type and s a term of type LocSet,
then infiniteUnion{vi}(s) is in TrmLocSet .
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item:seqDefbinder 7. If vi is a variable of type int, b0, b1 are terms of type int not containing vi and s
is an arbitrary term in Trmany, then seqDef{vi}(b0,b1,s) is in TrmSeq.

def:BinderSymbols

It is instructive to observe the role of the quantified variable vi in the following
syntax definition:

Definition 1.36 (extends Definition 1.5). If t is one of the terms bsum{vi}(b0,b1,s),def:FreeBoundVars2
bprod{vi}(b0,b1,s), infiniteUnion{vi}(s), and seqDef{vi}(b0,b1,s) we have

var(t) = var(b0)∪ var(b1)∪ var(s) and fv(t) = var(t)\{vi} .

We trust that the following remarks will suffice to clarify the semantic mean-
ing of the first two symbols introduced in Definition 1.35. In mathematical no-
tation one would write Σb0≤vi<b1svi for bsum{vi}(b0,b1,s) and Πb0≤vi<b1svi for
bprod{vi}(b0,b1,s). For the corner case b1 ≤ b0 we stipulate Σb0≤vi<b1svi = 0 and
Πb0≤vi<b1 svi = 1. The name bsum stands for bounded sum to emphasize that infinite
sums are not covered. The proof rules for bsum and bprod are the obvious recursive
definitions plus the stipulation for the corner cases which we forgo to reproduce
here.

For an integer variable vi the term infiniteUnion{vi}(s) would read in mathemat-
ical notation

⋃
−∞<vi<∞ s, and analogously for variables vi of type other than integer.

The precise semantics is part of Figure 1.12 in Section 1.4.4 below.
The semantics of seqDef{vi}(b0,b1,s) will be given in Definition 1.53 on

page 61. But, it makes an interesting additional example of a binder symbol.
The term seqDef{vi}(b0,b1,s) is to stand for the finite sequence 〈s(b0),s(b0 +
1), . . . ,s(b1−1)〉. For b1≤ b0 the result is the empty sequence, i.e., seqDef{vi}(b0,b1,s)=
〈〉. The proof rules related to seqDef are discussed in Chapter 5 Section 2 in the KeY
book.

1.3.2 Undefinedness
subsec02:Undefinedness

In KeY all functions are total. There are two ways to interpret a function symbol f
in a structure M at an argument position ā outside its intended range of definition:

1. The value of the function valM ( f ) at position ā is set to a default within the
intended range of f . E.g., bsum{vi}(1,0,s) evaluates to 0 (regardless of s).

2. The value of the function valM ( f ) at position ā is set to an arbitrary value b
within the intended range of f . For different structures different b are chosen.
When we talk about universal validity, i.e., truth in all structures, we assume that
for every possible choice of b there is a structure Mb such that valMb( f )(ā) = b.
The prime example for this method, called underspecification, is division by 0
such that, e.g., 1

0 is an arbitrary integer.

Another frequently used way to deal with undefinedness is to choose an error el-
ement that is different from all defined values of the function. We do not do this.
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The advantage of underspecification is that no changes to the logic are required.
But, one has to know what is happening. In the setting of underspecification we can
prove ∃ i;( 1

0
.
= i) for an integer variable i. However, we cannot prove 1

0
.
= 2

0 . Also
the formula castint(c)

.
= 5→ c .

= 5 is not universally valid. In case c is not of type
int the underspecified value for castint(c) could be 5 for c 6= 5.

The underspecification method gives no warning when undefined values are used
in the verification process. The KeY system offers a well-definedness check for JML
contracts, details are described in Section 8.3.3 in the KeY book.

1.4 First-Order Logic for Java
sec02:JavaFOL

As already indicated in the introduction of this chapter, Java first-order logic (JFOL)
will be an instantiation of the extended classical first-order logic from Subsection 1.3
tailored towards the verification of Java programs. The precise type hierarchy T
and signature Σ will of course depend on the program and the statements to be
proved about it. But we can identify a basic vocabulary that will be useful to have
in almost every case. Figure 1.3 shows the type hierarchy TJ that we require to be
at least contained in the type hierarchy T of any instance of JFOL. The mandatory
function and predicate symbols ΣJ are shown in Figure 1.4. Data types are essential
for formalizing nontrival program properties. The data types of the integers and the
theory of arrays are considered so elementary that they are already included here.
More precisely what is covered here are the mathematical integers. There are of
course also Java integers types. Those and their relation to the mathematical integers
are covered in Section on Integers in the KeY book. Also the special data type LocSet
of sets of memory locations will already be covered here. Why it is essential for the
verification of Java programs will become apparent in Chapters 8 and 9 in the KeY
book . The data type of Seq of finite sequences however will extensively be treated
later in Section 1.5.

1.4.1 Type Hierarchy and Signature
subsec02:JFOLSignature

The mandatory type hierarchy TJ for JFOL is shown in Figure 1.3. Between Object
and Null the class and interface types from the Java code to be investigated will
appear. In the future there might be additional data types at the level immediately
below Any besides boolean, int, LocSet and Seq, e.g., maps.

The mandatory vocabulary ΣJ of JFOL is shown in Figure 1.4 using the same
notation as in Definition 1.2. In the subsections to follow we will first present the
axioms that govern these data types one by one and conclude with their model-
theoretic semantics in Subsection 1.4.6.

As mentioned above, in the verification of a specific Java program the signature Σ

may be a strict superset of ΣJ . To mention just one example: for every model field m
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>

Any Heap Field

boolean int Object LocSet Seq

class types
from Java code

Null

⊥

Fig. 1.3 The mandatory type hierarchy TJ of JFOL fig:typeHierarchy

of type T contained in the specification of a Java class C an new symbol fm : Heap×
C→ T is introduced. The KeY book uses the terminology that function symbols with
at least one, usually the first, argument of type Heap are called observer function
symbols.

int and boolean all function and predicate symbols for int, e.g., +,∗,<, . . .
boolean constants TRUE, FALSE

Java types null : Null
length : Object→ int
castA : Object→ A for any A in T with ⊥@ Av Object.
instanceA : Any→ boolean for any type Av Any
exactInstanceA : Any→ boolean for any type Av Any

Field created : Field
arr : int→ Field
f : Field for every Java field f

Heap selectA : Heap×Object×Field→ A for any type Av Any
store : Heap×Object×Field×Any→ Heap
create : Heap×Object→ Heap
anon : Heap×LocSet×Heap→ Heap
wellFormed(Heap)

LocSet ε(Object,Field,LocSet)
empty,allLocs : LocSet
singleton : Object×Field→ LocSet
subset(LocSet,LocSet)
disjoint(LocSet,LocSet)
union, intersect,setMinus : LocSet×LocSet→ LocSet
allFields : Object→ LocSet, allObjects : Field→ LocSet
arrayRange : Object× int× int→ LocSet
unusedLocs : Heap→ LocSet

Fig. 1.4 The mandatory vocabulary ΣJ of JFOL fig:SigmaJ
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1.4.2 Axioms for Integers
subsec02:JFOLAxiomsInt

polySimp_addComm0 k+ i .
= i+ k add_zero_right i+0 .

= i
polySimp_addAssoc (i+ j)+ k .

= i+( j+ k) add_sub_elim_right i+(−i) .
= 0

polySimp_elimOne i∗1 .
= i mul_distribute_4 i∗ ( j+ k) .=(i∗ j)+(i∗ k)

mul_assoc (i∗ j)∗ k .
= i∗ ( j ∗ k) mul_comm j ∗ i .

= i∗ j
less_trans i < j∧ j < k→ i < k less_is_total_heu i < j∨ i .

= j∨ j < i
less_is_alternative_1 ¬(i < j∧ j < i) less_literals 0 < 1
add_less i < j→ i+ k < j+ k multiply_inEq i< j∧0< k→ i∗ k< j ∗ k

int_induction
Γ =⇒ φ(0),∆ Γ =⇒∀n;(0≤ n∧φ(n)→ φ(n+1)),∆

Γ =⇒∀n;(0≤ n→ φ(n)),∆

Fig. 1.5 Integer axioms and rules fig:intrules

Figure 1.5 shows the axioms for the integers with +, ∗ and <. Occasionally we
use the additional symbol ≤ which is, as usual, defined by x ≤ y↔ (x < y∨ x .

=
y). The implication multiply_inEq does in truth not occur among the KeY taclets.
Instead multiply_inEq0 i≤ j∧0≤ k→ i∗ k ≤ j ∗ k is included. But, multiply_inEq
can be derived from , multiply_inEq0 although by a rather lengthy proof (65 steps)
based on a normal form transformation. The reverse implication is trivially true.

Figure 1.5 also lists in front of each axiom the name of the taclet that imple-
ments it. The KeY system not only implements the shown axioms but many useful
consequences and defining axioms for further operations such as those related to
integer division and the modulo function. How the various integer data types of the
Java language are handled in the KeY system is explained in Section 5.4 of the KeY
book.

Incompleteness

Mathematically the integers (Z,+,∗,0,1,<) are a commutative ordered ringsidebar:Incompleteness
satisfying the well-foundedness property: every nonempty subset of the pos-
itive integers has a least element. Well-foundedness is a second-order prop-
erty. It is approximated by the first-order induction schema, which can be inter-
preted to say that every nonempty definable subset of the positive integers has
a least element. The examples known so far of properties of the integers that
can be proved in second-order logic but not in its first-order approximation, see
e.g.

KirbyParis82
[Kirby and Paris, 1982] are still so arcane that we need not worry about this

imperfection.
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1.4.3 Axioms for Heap
subsec02:JFOLAxiomsHeap

The state of a Java program is determined by the values of the local variables and
the heap. A heap assigns to every pair consisting of an object and a field declared
for this object an appropriate value. As a first step to model heaps, we require that
a type Field be present in JFOL. This type is required to contain the field constant
created and the fields arr(i) for array access for natural numbers 0≤ i. In a specific
verification context there will be constants f for every field f occurring in the Java
program under verification. There is no assumption, however, that these are the only
elements in Field; on the contrary, it is completely open which other field elements
may occur. This feature is helpful for modular verification: when the contracts for
methods in a Java class are verified, they remain true when new fields are added.
The data type Heap allows us to represent more functions than can possibly occur
as heaps in states reachable by a Java program:

1. Values may be stored for arbitrary pairs (o, f ) of objects o and fields f regard-
less of the question if f is declared in the class of o.

2. The value stored for a pair (o, f ) need not match the type of f .item:typmismatch
3. A heap may assign values for infinitely many objects and fields.

On one hand our heap model allows for heaps that we will never need, on the other
hand this generality makes the model simpler. Relaxation 2 in the above list is neces-
sary since JFOL does not use dependent types. To compensate for this shortcoming
there has to be a family of observer functions selectA, where A ranges over all sub-
types of Any.

The axiomatization of the data type Heap, shown in Figure 1.6, follows the pat-
tern well known from the theory of arrays. The standard reference is

McCarthy62
[McCarthy,

1962]. There are some changes however. One would expect the following rule
selectA(store(h,o, f ,x),o2, f 2) if o .

= o2∧ f .
= f 2 then x else selectA(h,o2, f 2).

Since the type of x need not be A this easily leads to an ill-typed formula. Thus we
need castA(x) in place of x. In addition the implicit field created gets special treat-
ment. The value of this field should not be manipulated by the store function. This
explains the additional conjunct f ˙6=created in the axiom. The rule selectOfStore as
it is shown below implies selectA(store(h,o,created,x),o2, f 2) .

= selectA(h,o2, f 2).
Assuming extensionality of heaps this entails store(h,o,created,x) .

= h. The created
field of a heap can only be changed by the create function as detailed by the rule
selectOfCreate. This ensures that the value of the created field can never be changed
from TRUE to FALSE. Note also, that the object null is considered to be created from
the start, so it can be excepted from rule selectOfCreate.

There is another operator, named anon(h,s,h′), that returns a Heap object. Its
meaning is described by the rule selectOfAnon in Figure 1.6: at locations (o, f ) in
the location set s the resulting heap coincides with h′ under the proviso f ˙6=created,
otherwise it coincides with h. To get an idea when this operator is useful imaging
that h is the heap reached at the beginning of a while loop that at most changes loca-
tions in a location set s and that h′ is a totally unknown heap. Then anon(h,s,h′) rep-
resents a heap reached after an unknown number of loop iterations. This heap may
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selectOfStore selectA(store(h,o, f ,x),o2, f 2) 
if o .

= o2∧ f .
= f 2∧ f ˙6=created then castA(x) else selectA(h,o2, f 2)

selectOfCreate selectA(create(h,o),o2, f ) 
if o .

= o2∧o ˙6=null∧ f .
= created then castA(TRUE) else selectA(h,o2, f )

selectOfAnon selectA(anon(h,s,h′),o, f ) 
if(ε(o, f ,s)∧ f ˙6=created)∨ ε(o, f ,unusedLocs(h))
then selectA(h′,o, f ) else selectA(h,o, f )

with the typing o,o1,o2 : Object, f , f 2 : Field,h,h′ : Heap,s : LocSet

Fig. 1.6 Rules for the theory of arrays. fig:ArrayTheoryrules

have more created objects than the initial heap h. Since location sets are not allowed
to contain locations with not created objects, see onlyCreatedObjectsAreInLocSets
in Figure 1.7, this has to be added as an addition case in rule selectOfAnon. This
application scenario also accounts for the name which is short for anonymize.

A patiently explained example for the use of store and select functions can be
found in Subsection 15.2.3 of the KeY book . While SMT solvers can handle ex-
pressions containing many occurrences of store and select quite efficiently, they are
a pain in the neck for the human reader. The KeY interface therefore presents those
expressions in a pretty printed version, see explanations in Sectio 16.2 of the KeY
book.

The taclets in Figure 1.6 are called rewriting taclets. We use the  notation
to distinguish them from the other sequent rules as, e.g., in Figures 1.1 and 1.2. A
rewriting rule s t is shorthand for a sequent rule Γ ′=⇒∆ ′

Γ=⇒∆
where Γ ′ =⇒ ∆ ′ arises

from Γ =⇒ ∆ by replacing one or more occurrences of the term s by t. Rewriting
rules will again be discussed in the taclet tutorial of the KeY book.

Our concept of heap is an overgeneralization. Most of the time this does no harm.
But, there are situations where it is useful to establish and depend on certain well-
formedness conditions. The predicate wellFormed(heap) has been included in the
vocabulary for this purpose. No effort is made to make the wellFormed(h) predicate
so strong that it only is true of heaps h that can actually occur in Java programs. The
axioms in Figure 1.7 were chosen on a pragmatic basis. There is e.g., no axiom that
guarantees for a created object o of type A with select(h,o, f ) defined that the field
f is declared in class A.

The first four axioms in Figure 1.7 formalize properties of well-formed heaps
while the rest cover situations starting out with a well-formed heap, manipulate it
and end up again with a well-formed heap. The formulas are quite self-explanatory.
Reading though them you will encounter the auxiliary predicate arrayStoreValid:
arrayStoreValid(o,x) is true if o is an array object of exact type A[] and x is of
type A.

The meaning of the functions symbols instanceA(x), exactInstanceA(x), castA(x),
and length(x) is given by the axioms in Figure 1.8. This time we present the axioms
in mathematical notation for conciseness. The axiom scheme, (Ax-I) and (Ax-C)
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onlyCreatedObjectsAreReferenced
wellFormed(h)→ selectA(h,o, f ) .

= null∨ selectboolean(h,selectA(h,o, f ),created) .
= TRUE

onlyCreatedObjectsAreInLocSets
wellFormed(h)∧ ε(o2, f 2,selectLocSet(h,o, f ))→ o2 .

= null∨
selectboolen(h,o2,created) .

= TRUE

narrowSelectType
wellFormed(h)∧ selectB(h,o, f )→ selectA(h,o, f ) where type of f is A and Av B

narrowSelectArrayType
wellFormed(h)∧o ˙6=null∧ selectB(h,o,arr(i))→ selectA(h,o,arr(i))

where type of o is A[] and Av B

wellFormedStoreObject
wellFormed(h)∧ (x .

= null∨ (selectboolean(h,x,created) .
= TRUE∧ instanceA(x)

.
= TRUE))

→ wellFormed(store(h,o, f ,x)) where type of f is A

wellFormedStoreArray
wellFormed(h)∧ (x .

= null∨ (selectboolean(h,x,created) .
= TRUE∧arrayStoreValid(o,x)))

→ wellFormed(store(h,o,arr(idx),x)))

wellFormedStoreLocSet
wellFormed(h)∧∀ov;∀ f v;(ε(ov, f v,y)→ ov .

= null∨ selectboolean(h,ov,created) .
= TRUE)

→ wellFormed(store(h,o, f ,y)) where type of f is A and LocSet v A

wellFormedStorePrimitive
wellFormed(h)→ wellFormed(store(h,o, f ,x))
provided f is a field of type A,x is of type B, and Bv A,B 6v Ob ject,B 6v LocSet

wellFormedStorePrimitiveArray
wellFormed(h)→ wellFormed(store(h,o,arr(idx),x))
provided o is of sort A,x is of sort B,B 6v Ob ject,B 6v LocSet,Bv A

wellFormedCreate
wellFormed(h)→ wellFormed(create(h,o))

wellFormedAnon
wellFormed(h)∧wellFormed(h2)→ wellFormed(anon(h,y,h2))

In the above formulas the following implicitly universally quantified variables are used: h,h2 :
Heap, o,x : Object, f : Field, i : int, y : LocSet

Fig. 1.7 Rules for the predicate wellFormed fig:wellFormedRules

show that adding instanceA and castA does not increase the expressive power. These
functions can be defined already in the basic logic plus underspecification. The for-
mulas (Ax-E1) and (Ax-E2) completely axiomatize the exactInstanceA functions,
see Lemma 1.45 on page 52. The function length is only required to be not negative.
Axioms (Ax-E1), (Ax-E2), and (Ax-L) are directly formalized in the KeY system as
taclets instance_known_dynamic_type, exact_instance_known_dynamic_type and
arrayLengthNotNegative. The other two axioms families have no direct taclet coun-
terpart. But, they can easily be derived.
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∀Object x;(instanceA(x)
.
= TRUE↔∃y;(y .

= x)) with y : A (Ax-I)
eq:ax-i
∀Object x;(exactInstanceA(x)

.
= TRUE→ instanceA(x)

.
= TRUE) (Ax-E1)

eq:ax-e1
∀Object x;(exactInstanceA(x)

.
= TRUE→ instanceB(x)

.
= FALSE) with A 6v B (Ax-E2)

eq:ax-e2
∀Object x;(instanceA(x)

.
= TRUE→ castA(x)

.
= x) (Ax-C)

eq:ax-c
∀Object x;(length(x)≥ 0) (Ax-L)

Fig. 1.8 Axioms for functions related to Java types fig:AxiomsTypRelated

1.4.4 Axioms for Location Sets
subsec02:JFOLAxiomsLocSet

The data type LocSet is a very special case of the set type in that only sets of heap
locations are considered, i.e., sets of pairs (o, f ) with o an object and f a field. This
immediately guarantees that the is-element-of relation ε is well-foundedfor LocSet.
Problematic formulas such as aεa are already syntactically impossible.

The rules for the data type LocSet are displayed in Figure 1.9. The only constraint
on the membership relation ε is formulated in rule equalityToElementOf. One could
view this rule as a definition of equality for location sets. But, since equality is a
built in relation in the basic logic it is in fact a constraint on ε . All other rules in
this figure are definitions of the additional symbols of the data type, such as, e.g.,
allLocs, union, intersect, and infiniteUnion{av}(s1).

elementOfEmpty ε(o1, f 1,empty)  FALSE

elementOfAllLocs ε(o1, f 1,allLocs)  TRUE

equalityToElementOf s1 .
= s2  ∀o;∀ f ;(ε(o, f ,s1)↔ ε(o, f ,s2))

elementOfSingleton ε(o1, f 1,singleton(o2, f 2)  o1 .
= o2∧ f 1 .

= f 2

elementOfUnion ε(o1, f 1,union(t1, t2))  ε(o1, f 1, t1)∨ ε(o1, f 1, t2)

subsetToElementOf subset(t1, t2)  ∀o;∀ f ;(ε(o, f , t1)→ ε(o, f , t2))

elementOfIntersect ε(o1, f 1, intersect(t1, t2))  ε(o1, f 1, t1)∧ ε(o1, f 1, t2)

elementOfAllFields ε(o1, f 1,allFields(o2)  o1 .
= o2

elementOfSetMinus ε(o1, f 1,setMinus(t1, t2))  ε(o1, f 1, t1)∧¬ε(o1, f 1, t2)

elementOfAllObjects ε(o1, f 1,allOb jects( f 2)  f 1 .
= f 2

elementOfInfiniteUnion ε(o1, f 1, infiniteUnion{av}(s1))  ∃av;ε(o1, f 1,s1)

with the typing o,o1,02 : Object, f , f 1 : Field,s1,s2, t1, t2 : LocSet, av of arbitrary type.

Fig. 1.9 Rules for data type LocSet fig:LocSetrules
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1.4.5 Digression On The Theory of Integers

We return to a more thorough account of the axioms on integers and types presented
so far.

Mathematically the integers are a nontrivial ordered commutative ring with unit
that satisfies the least number principle. While references to Peano’s axioms for the
natural numbers abound, it is hard to find at least one reference to an axiom system
for integers. The axioms shown in Figure 1.10 appear in unpublished lecture notesGreenleaf00
Greenleaf [2000-2008].

Comparison with KeY Taclets

We will show that the theory given by the axioms in Figure 1.10 is the same as the
theory given by those in Figure 1.5. More precisely, we will show that all axioms in
Figure 1.5 are derivable from the axioms in Figure 1.10 and vice versa, all axioms
in Figure 1.10 are derivable from the axioms in Figure 1.5. We first consider the
obvious implications.

A.1 (i+ j)+ k .
= i+( j+ k)

A.2 i+ j .
= j+ i

A.3 0+ i .
= i

A.4 i+(−i) .
= 0

M.1 (i∗ j)∗ k .
= i∗ ( j ∗ k)

M.2 i∗ j .
= j ∗ i

M.3 1∗ x .
= x

M.4 i∗ ( j+ k) .
= i∗ j+ i∗ k

M.5 1 6= 0
O.1 0 < i∨0 = i∨0 < (−i)
O.2 0 < i∧0 < j→ 0 < i+ j
O.3 0 < i∧0 < j→ 0 < i∗ j
O.4 i < j↔ 0 < j+(−i)
O.5 ¬(0 < 0)
Ind φ(0)∧∀i(0≤ i∧φ(i)→ φ(i+1))→∀i(0≤ i→ φ(i))

Fig. 1.10 Integer Axioms fig:intaxioms

lem:intax2intrules1 Lemma 1.37. The following rules from Figure 1.5 are derivable from the axioms in
Figure 1.10:

add_zero_right polySimp_addComm0
polySimp_addAssoc add_sub_elim_right
polySimp_elimOne mul_distribute_4
mul_assoc mul_comm
less_trans less_is_alternative_1
int_induction
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Proof. add_zero_right follows from A.3 and A.2.
polySimp_addComm0 equals A.2
polySimp_addAssoc equals A.1
add_sub_elim_right equals A.4
polySimp_elimOne follows from M.3 and M.2.
mul_distribute_4 equals M.4
mul_assoc equals M.1
mul_comm equals M.2

less_trans i < j∧ j < k ⇔ 0 < j+(−i)∧0 < k+(− j) O.4
⇒ 0 < ( j+(−i))+(k+(− j)) O.2
⇔ 0 < k+(−i)+( j+(− j)) A.1,A.2
⇒ 0 < k+(−i) A.3,A.4
⇔ i < k O.4

less_is_alternative_1 i < j∧ j < i⇔ 0 < j+(−i)∧0 < i+(− j) O.4
⇒ 0 < ( j+(−i))+(i+(− j)) O.2
⇔ 0 < 0 A.1−A.4

By O.5 this yields ¬(i < j∧ j < i).
int_induction follows directly from Ind

That was easy. The derivations of the remaining six rules from Figure 1.5 require
much more effort. We start with the a first set of consequences from these axioms.

lem:IntAxConsequences1 Lemma 1.38. The following formulas can be derived from the axioms in Figure
1.10:

C.1. i+ j .
= 0→ j .

=−iitem:minusUnique
C.2. −(−i)) .

= iitem:minusminus
C.3. ∀ j(i+ j .

= j)→ i .
= 0item:zeroUnique

C.4. −0 .
= 0item:minuszero

C.5. −(i+ j) .
= (−i)+(− j)item:minussum

C.6. 0∗ i .
= 0item:timeszero

C.7. −i .
= (−1)∗ iitem:multminusone

C.8. ∀ j(i∗ j .
= j)→ i .

= 1item:oneUnique
C.9. (−1)∗ (−1) .

= 1item:minusonesquared
C.10. (−i)∗ j .

=−(i∗ j)item:minusdistr

Proof. ad C.1 i+ j .
= 0

(i+ j)+(−i) .
= 0+(−i) equational logic

(i+(−i))+ j .
= 0+(−i) A.1 and A.2

(i+(−i))+ j .
= −i A.3

j .
= −i A4 and A.3

ad C.2 i+(−i) .
= 0 A4

(−i)+ i .
= 0 A2

i .
= −(−i) C.1

ad C.3 ∀ j(i+ j .
= j) assumption

i+0 .
= 0 instantiation for ∀ j

i .
= 0 A2 and A.3
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ad C.4 0+(−0) .
= 0 A.4

0+(−0) .
= −0 A.3

−0 .
= 0 equational logic

ad C.5 (i+ j)+(−i+(− j)) .
= (i+(−i))+( j+(− j)) A.1,A.2
.
= 0+0 A.4
.
= 0 A.3

Now, C.1 yields −(i+ j) .
=−i+(− j).

ad C.6 We first observe:
0∗ i .

= (0+0)∗ i A.3
.
= 0∗ i+0∗ i M.4,A.2

We start a new line of reasoning:
0 .
= 0∗ i+−(0∗ i) A.4
.
= (0∗ i+0∗ i)+−(0∗ i) above equation
.
= 0∗ i+(0∗ i+−(0∗ i) A.1
.
= 0∗ i+0 A.4
.
= 0∗ i A.2,A.2

ad C.7 i+(−1)∗ i .
= 1∗ i+(−1)∗ i M.3
.
= (1+(−1))∗ i M.4,A.2
.
= 0∗ i A.4
.
= 0 C.6

Now, C.1 yields −i .
= (−1)∗ i.

ad C.8 ∀ j(i∗ j .
= j) assumption

i∗1 .
= 1 instantiation for ∀ j

i .
= 1 M.3,A.2

ad C.9 −(−1) .
= (−1)∗ (−1) C.7

1 .
= (−1)∗ (−1) C.2

ad C.10 i∗ j+(−i)∗ j .
= (i+(−i))∗ j M.4,A.2
.
= 0∗ j A.4
.
= 0 C.6

By C.1 we get −(i∗ j) .
= (−i)∗ j.

lem:intax2intrules2 Lemma 1.39. From the axioms in Figure 1.10 the rules are derivable from the ax-
ioms in Figure 1.5

less_is_total_heu i < j∨ i = j∨ j < i
less_literals 0 < 1
add_less i < j→ i+ k < j+ k
multiply_inEq i < j∧0 < k→ i∗ k < j ∗ k

Proof. less_is_total_heu
0 < j+(−i)∨0 = j+(−i)∨0 <−( j+(−i)) O.1
0 < j+(−i)∨ i = ( j+(−i))+ i∨0 <−( j+(−i)) equational logic
0 < j+(−i)∨ i = j∨0 <−( j+(−i)) A.1,A.4,A.2,A.3
0 < j+(−i)∨ i = j∨0 < (− j)+−(−i)) C.5
0 < j+(−i)∨ i = j∨0 < i+(− j) A.2,C.2
i < j∨ i = j∨ j < i O.4
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less_literals By O.1 we know 0 < 1∨ 0 = 1∨ 0 < (−1). By M.5 this reduces to
0 < 1∨0 < (−1). If 0 < 1 we are finished. So assume 0 < (−1). From M.3 we get
0 < (−1)∗ (−1). Now, C.9 yields 0 < 1.
add_less
i+ k < j+ k ⇔ 0 < ( j+ k)+−(i+ k) O.4

⇔ 0 < ( j+ k)+((−i)+(−k)) C.5
⇔ 0 < ( j+(−i))+(k+(−k)) A.1,A.2
⇔ 0 < j+(−i) A.3,A.4
⇔ i < j O.4

multiply_inEq
i < j∧0 < k ⇔ 0 < j+(−i)∧0 < k O.4

⇒ 0 < ( j+(−i))∗ k O.3
⇔ 0 < j ∗ k+(−i)∗ k M.4,A.2
⇔ 0 < j ∗ k+(−(i∗ k)) C.10
⇔ i∗ k < j ∗ k O.4

Having finished the proofs of Lemmas 1.37 and 1.39 we now turn to the reverse
implication.

lem:intrules2intax Lemma 1.40. From the rules in Figure 1.5 all axioms in Figure 1.10 can be derived.

Proof.
A.1 (i+ j)+ k .

= i+( j+ k) equals polySimp_addAssoc
A.2 i+ j .

= j+ i equals polySimp_addComm0
A.3 0+ i .

= i follows from add_zero_right and A.2
A.4 i+(−i) .

= 0 equals add_sub_elim_right
M.1 (i∗ j)∗ k .

= i∗ ( j ∗ k) equals mul_assoc
M.2 i∗ j .

= j ∗ i equals mul_comm
M.3 1∗ x .

= x follows from polySimp_elimOne and M.2
M.4 i∗ ( j+ k) .

= i∗ j+ i∗ k equals mul_distribute_4
M.5 1 6= 0 follows from less_literals and less_base
O.1 0 < i∨0 = i∨0 < (−i) follows from less_is_total_heu
O.2 0 < i∧0 < j→ 0 < i+ j 0 < j⇒ i < i+ j by add_less and A.2

0 < i∧ i < i+ j⇒ 0 < i+ j by less_trans
O.3 0 < j∧0 < k→ 0 < j ∗ k follows from multiply_inEq
O.4 i < j↔ 0 < j+(−i) follows from add_less plus A.1,A.4

for → instantiate k =−i
for ← instantiate k = i

O.5 ¬(0 < 0) follows from less_base
Ind φ(0)∧∀i(0≤ i∧φ(i)→ φ(i+1))→∀i(0≤ i→ φ(i)) equals int_induction

Derived Properties

There are many useful properties of the integers that can derived from the given
axioms. Let us start with some simple examples.
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Lemma 1.41.lem:intSimpleDerived

item:lessIrrefl 1. ¬(i < i)
item:immSuccPlusOne 2. i < i+1

item:lessInvMultMinus 3. i < j→− j <−i

Proof.
(ad1) can easily be seen to follow from axiom less_is_alternative_1 ¬(i < j∧ j <
i) by taking j = i. By the way, the formula ¬(i < i) is contained among the KeY
taclets by the name less_base.
(ad2) can be seen to follow from less_literals 0< 1, add_less, and add_zero_right.
(ad3) From i < j we obtain by applying add_less twice (i+(−i))+(− j)< ( j+
(−i))+ (− j), which by associativity, commutativity, axioms add_sub_elim_right
and add_zero_right yields the desired conclusion.

Upto now we have tried to stick to the vocabulary of the axoms. For ease of use
it is indispensible to introduce definitional extensions, e.g.

i≤ j↔ (i = j∨ i < j) (1.10) DefLEQ

A consequence that is not immediately obvious is the claim in the following
lemma.

lem:intImmSucc Lemma 1.42. The formula

∀i.∀ j.(i < j→ i+1≤ j)

can be derived from the axioms in Figure 1.5.
In words we could say that i+1 is the immediate successor of i.

Proof. We first show by induction j

0 < j→ 1≤ j (1.11) immSuccPart1

The induction formula φ( j) in the notation of Figure 1.5 is 0< j→ 1≤ j). The base
case 0 < 0→ 1≤ 0 is true since by less_base the formula ¬(0 < 0) can be derived.
To show 0 ≤ j∧φ( j)→ φ( j+ 1) we assume 0 ≤ j, 0 < j→ 1 ≤ j and 0 < j+ 1
with the aim to show 1≤ j+1. From axiom less_is_total_heu we obtain 0= j∨0<
j∨ j < 0. In case 0 = j the claim to be proved, tacitly using add_zero_right, reduces
to 1 ≤ 1 which is true by definition. In case 0 < j we get 1 ≤ j from the induction
hypothesis and 1 ≤ j+ 1 by (2) and transitivity. The last alternative j < 0 and the
assumption 0 ≤ j would yield by transitivity j < j contradicting (1). This yields
∀ j.(0≤ j→ (0 < j→ 1≤ j)). Simple propositional reasoning and the definition of
≤ now prove (1.11).
The claim of the lemma is now obtained by the following chain of reasoning:
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i < j lefthand side
i+(−i)< j+(−i) add_less
0 < j+(−i) add_sub_elim_right
1≤ j+(−i) (1.11)
1+ i≤ ( j+(−i))+ i add_less and Def.of≤
i+1≤ j+(i+(−i)) associativity and commutativity of +
i+1≤ j add_sub_elim_right

Justification of the Axioms

It is a well-know result of mathemcatical logic that there can be no complete axiom-
atization for the natural numbers. This result can easily be extended to show that
there can be no complete axiomatization for the intgers. This raises the question of
how close the axioms shown in Figure 1.10 describe the integers. In this paragraph
we try to answer this question.

By Int2 we denote the axiom system from 1.10 with the decisive change that the
induction axiom Ind is replaced by the second order induction axiom Ind2 where X
ranges over arbitrary subsets of the respective domain:

∀X(0 ∈ X ∧∀x((0≤ x∧ x ∈ X)→ (x+1) ∈ X)→∀x(0≤ x→ x ∈ X))

thm:Int2UniqueModel Theorem 1.43. Any two models of Int2 are isomorphic.

Proof

Let A , B be two models of Int2. By sA, sB we denote the interpretation of symbol
s in A and B. Thus 0A, 1A are the additive and multiplicative unit in A , while
0B, 1B are the corresponding units in B. For n ≥ 1 we denote by tn for purposes
of this proof the term 1+ . . .+1, that consists of n-fold addition of of the constant
1. Furthermore, t0 is simply the constant 0. For brevity we use nA, nB to denote the
interpretation of the term tn in A and B.

Let CA = {nA | n≥ 0}. An appeal to Ind2 shows

{a ∈ A |A |= 0≤ a}=CA

Sideremark: We have written sloppily A |= 0 ≤ a for the correct but cumbersome
statement (A ,β ) |= 0≤ x with β (x) = a.

Likewise we have CB = {nB | n≥ 0}= {b ∈ B |B |= 0≤ b}.
This will be the only two applications of second order induction Ind2, in all other

applications the first-order scheme Ind will suffice.
In the following contruction of the isomorphism π we will list the formulas that

are need at each step. After finishing the explanations we turn to showing that all
these formulas can be derived from the axioms.
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Using

∀i(i < 0→ 0 <−i) (1.12) align:neg2pos

and

∀i(−(−i) = i) (1.13) align:minusInvolution

we see that the universe A of structure A equals {nA | n ≥ 0}∪{−A(nA) | n < 0}
and likewise B = {nB | n≥ 0}∪{−B(nB) | n < 0}.

It will later prove handy to extend the notation introduced above a bit and use t−n
to stand for the term −tn for n ≥ 1 and (−n)A and (−n)B to stand for the interpre-
tations (−tn)A and (−tn)B . In this notation the description of the universes given
above look like this A = {nA | n ∈ Z} and B = {nB | n ∈ Z}.

We define the mapping π : A→ B by π(nA) = nB and π(−AnA) =−BnB. For this
to be a sound definition we need

¬(tn
.
= tm) for all 0≤ m,n with n 6= m (1.14) align:posdiff

and

¬∃x(0≤ x∧ x < 0) (1.15) align:posDisjointNeg

Notice that (1.13) and (1.14) together imply ¬(−tn
.
= −tm) for all 0 ≤ m,n with

n 6= m.
The fact that the consequences (1.12) to (1.15) from the axioms are true in A

guarantees that π is well-defined. Given the representation of B the definition of π

ensures that it is surjective. The fact that the consequences (1.13) to (1.14) from
the axioms are true in B guarantees that π is injective. It remains to prove the
homomorphism properties

item:hom0 1. π(0A) = 0B

item:hom1 2. π(1A) = 1B

item:homplus 3. π(a1 +
A a2) = π(a1)+

B π(a2) for a1,a2 ∈ A
item:homtimes 4. π(a1 ∗A a2) = π(a1)∗B π(a2) for a1,a2 ∈ A
item:homminus 5. π(−Aa) =−Bπ(a) for a ∈ A
item:homorder 6. a1 <

A a2)⇔ π(a1)<
B π(a2) for a1,a2 ∈ A

The requirements 1 and 2 follow directly from the definition.
The remaining requirements could be infered from the following formulas re-

spectively:

tn + tm
.
= tn+m (1.16) align:homplus

tn ∗ tm
.
= tn∗m (1.17) align:homtimes
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−tm
.
= t−m (1.18) align:homminus

tn < tm for n,m ∈ Z with n < m (1.19) align:homorder

and

¬(tn < tm)for n,m ∈ Z with n 6< m (1.20) align:homorderNeg

Proof of 1.12:

Instantiating j with 0 we obtain from O.4 and A.3 the equivalence i < 0↔ 0 <−i,
as required.

Proof of 1.13:

We first prove

For every i there is a unique element j with j+ i = 0. (1.21) align:minusunique

Assume there are j, j′ such that j+ i = j′+ i = 0. Then

j = 0+ j = ( j′+ i)+ j = j′+(i+ j) = j′+0 = j′

as required.

∀i(−(−i) .
= i) (1.22) align:minusminus

From axiom A.3 i+(−i) = 0 statement (1.21) leads to −(−i) = i. We tacitely use
commutativity all the time.

Proof of 1.14:

From O.3 and O.4 we obtain ∀i(¬(i< i)) or logical equivalently ∀i∀ j(i< j→ i 6= j).
From Lemma 1.39 we know 0 < 1 which gives us ¬(0 .

= 1) for a start. From 0 < 1
we may derive 0 < tn for every n > 0 by repeated application of O.2. Thus we
know ¬(0 .

= tn) for every n > 0. For 0 ≤ n < m we derive tm +−tn
.
= tm−n using

associativity, commutativity and−(i+ j) .
=−i+− j. This last equality follows from

(−i+− j)+ i+ j = 0 and the uniqueness of the additive inverse, observed above.
In the situation 0 ≤ n < m we have 0 < m− n and thus as seen above can derive
0 < tm−n, which leads to 0 < tm +−tn. Now, O.4 yields derivability of tn < tm and
thus ¬(tn

.
= tm).

We note for the verification of 1.19 below that we have already shown that tn < tm
is derivable for 0≤ n < m.
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Proof of 1.15:

By Lemma 1.37 we know ∀i(0 ≤ i∧ i < 0→ 0 < 0), which by axiom O.5 yields
∀i(¬(0≤ i∧ i < 0). This, of course, is equivalent to ¬∃i(0≤ i∧ i < 0).

Proof of 1.16:

Case 0≤m,n In this case tn + tm and tn+m are modulo associativity the same term.
Case m,n < 0 Using the previous case and the equation−(i+ j) .

=−i+− j already
established above we get the following line of reasoning:

tn + tm
.
=−t−n +−t−m

.
=−(t−n + t−m)

.
=−(t−(n+m))

.
= tn+m

Case m < 0,n≥ 0
Making use of the equation −(i+ j) .

= −i+− j noted above the term tn + tm is of
the form 1+ . . .1+(−1)+ . . .+(−1). Using associativity, commutativity and A.3,
A.4 this can equivalently be reduced to
Subcase −m≤ n : tn+m of the form 1+ . . .+1.
Subcase−m > n (−1)+ . . .+(−1), which using−(i+ j) .

=−i+− j again is equiv-
alent to tn+m.

So, in both cases we have established the claim.
Case n < 0,m≥ 0 Dual to the previous case.

Proof of 1.17:

Before we delve into the details let us look at a tpyical example: we need to show
that e.g., (1+1)∗ (1+1+1) .

= 1+1+1+1+1+1 is derivable.
We need some preliminaries to do this.

∀i(0 .
= 0∗ i) (1.23) align:timeszero

Here is a proof for 1.23:

0 .
= 0∗ i+−(0∗ i) A.4
.
= (0+0)∗ i+−(0∗ i) A.3
.
= (0∗ i+0∗ i)+−(0∗ i) M.2,M.4
.
= 0∗ i+(0∗ i+−(0∗ i) A.1
.
= 0∗ i+0 A.4
.
= 0∗ i A.3

∀i∀ j( j ∗ (−i) .
=−( j ∗ i)) (1.24) align:timesminus

Proof for 1.24: First look at:
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j ∗ i+ j ∗ (−i) = j ∗ (i+(−i)) M.4
= j ∗0 A.4
= 0 (1.23)

Since the additive inverse is unique (see above) we must have −( j ∗ i) .
= j ∗ (−i).

Case 0≤m,n This we prove by induction.
initial case:

tn ∗ t0
.
= tn ∗0 Def. of t0.
= 0 1.23
.
= tn∗0 Def. of t0

step case
tn ∗ tm+1

.
= tn ∗ (tm +1) Def. of tm+1.
= tn ∗ tm + tn ∗1 M.4
.
= tn ∗ tm + tn M.3
.
= tn∗m + tn Ind. Hyp.
.
= tn∗m+n Def. of tn∗m+n.
= tn∗(m+1) metalevel reasoning

Case m,n < 0

tn ∗ tm
.
= (−t−n)∗ (−t−m) Def. of tn.
= −(−(t−n ∗ t−m)) (1.24) twice
.
= t−n ∗ t−m (1.22)
.
= t(−n)∗(−m) previous case
.
= tn∗m metalevel reasing

Case m≥ 0,n < 0

tn ∗ tm
.
= (−t−n)∗ tm Def. of tn.
= −(t−n ∗ tm) (1.24)
.
= −(t(−n)∗m) first case above
.
= t−(−n)∗m (1.24)
.
= tn∗m metalevel reasing

Case m < 0,n≥ 0 analogous to previous case.

Proof of 1.18:

Before we go on we note the following derivable property

∀i∀ j((−i)< (− j)↔ j < i) (1.25) align:minusorder

(−i)< (− j)↔ 0 < (− j)+−(−(i) O.4
↔ 0 < i+(− j) (1.22)
↔ j < i O.4
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Case 0≤ n,m This case we have already covered above in the proof of (1.14).
Case n,m < 0 Can be reduced by (1.25) to the first case.
Case m < 0,0≤ n From the first case we get the derivability of 0≤ tn and 0 < t−m.
Now, (1.25 we obtain further −t−m < 0 which by definition of tm for negative m is
the same as tm < 0. By the transitivity of < proved in Lemma 1.37 we get tm < tn as
desired.
Case n < 0,0≤m Symmetric to the previous case.

Proof of 1.20:

We again start with a simple observation:

∀i(¬(i < i)) (1.26) align:notIdorder

By O.4 the relation i < i is equivalent to 0 < i+ (−i) and thus to 0 < 0, which
contradicts O.5.

Now, if ¬(n < m) then by Lemma 1.39 either n = m in which case we can derive
¬(kn < kn), by (1.26) or m < n. In the second case we can derive tm < tn as seen
in (1.18). If we also had tn < tm then by transitivity the contradiction tn < tn would
follow. Thus we can derive ¬(tn < tm). ut

cor:Int2complete Corollary 1.44. For any formula φ in the vocabulary of the theory Int:

Int2 ` φ ⇔ Z |= φ

Proof

Since Z is a model of the theory Int2 the implication ⇒ is true. For the reverse
implication assume Z |= φ and Int2 6` φ . Then there is a model M of Int2 with
M |= ¬φ . By Theorem 1.43 M is isormorphic to Z.Contradiction! ut

Corollary 1.44 states that Int2 axiomatizes the theory of the integers completely.
We take this as an indication that the first-order relaxation Int of Int2 is a good
approximation of the theory of the integers. Note, that the second-order induction
axioms is only used once in the proof of Theorem 1.43.

End: Digression On The Theory of Integers

1.4.6 Semantics
subsec02:JFOLSemantics

As already remarked at the start of Subsection 1.2.3, a formal semantics opens up the
possibility for rigorous soundness and relative completeness proofs. Here we extend
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and adapt the semantics provided there to cover the additional syntax introduced for
JFOL (see Section 1.4.1).

We take the liberty to use an alternative notion for the interpretation of terms.
While we used valM,β (t) in Section 1.2.3 to emphasize also visually that we are
concerned with evaluation, we will write tM,β for brevity here.

The definition of a FOL structure M for a given signature in Subsection 1.2.3
was deliberately formulated as general as possible, to underline the universal nature
of logic. The focus in this subsection is on semantic structures tailored towards the
verification of Java programs. To emphasize this perspective we call these structures
JFOL structures.

A decisive difference to the semantics from Section 1.2.3 is that now the interpre-
tation of some symbols, types, functions, predicates, is constrained. Some functions
are completely fixed, e.g., addition and multiplication of integers. Others are almost
fixed, e.g., integer division n/m that is fixed except for n/0 which may have different
interpretations in different structures. Other symbols are only loosely constrained,
e.g., length is only required to be nonnegative.

The semantic constraints on the JFOL type symbols are shown in Figure 1.11.
The restriction on the semantics of the subtypes of Object is that their domains

contain for every n∈N infinitely many elements o with lengthM (o) = n. The reason
for this is the way object creation is modeled. When an array object is created an
element o in the corresponding type domain is provided whose created field has
value FALSE. The created field is then set to TRUE. Since the function length is
independent of the heap it cannot be changed in the creation process. So, the element
picked must already have the desired length. This topic will be covered in detail in
Subsection 3.6.6 of the KeY book. The semantics of Seq will be given in a later
chapter .

• Dint = Z,
• Dboolean = {tt, ff},
• DObjectType is an infinite set of elements for every ObjectType with Null @ ObjectType v

Object,
subject to the restriction that for every positive integer n there are infinitely many elements o
in DObjectType with lengthM (o) = n.

• DNull = {null},
• DHeap = the set of all functions h : DObject×DField → DAny,
• DLocSet = the set of all subsets of {(o, f ) | o ∈ DObject and f ∈ DField},
• DField is an infinite set.

Fig. 1.11 Semantics on type domains fig:FixedTypedomains
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Constant Domain

Let T be a theory, that does not have finite models. By definition T ` φ iff
M |= φ for all models M of T . The Löwenheim-Skolem Theorem, which
by the way follows easily from the usual completeness proofs, guarantees that
T ` φ iff M |= φ for all countably infinite models M of T . Let S be an arbitrary
countably infinite set, then we have further T ` φ iff M |= φ for all models M
of T such that the universe of M is S. To see this assume there is a countably
infinite model N of T with universe N such that N |= ¬φ . For cardinality
reasons there is a bijection b from N onto S. So far, S is just a set. It is straight-
forward to define a structure M with universe S such that b is an isomorphism
from N onto M . This entails the contradiction M |= ¬φ .

The interpretation of all the JFOL function and predicate symbols listed in Fig-
ure 1.4 is at least partly fixed. All JFOL structures M = (M,δ , I) are required to
satisfy the constraints put forth in Figure 1.12.

Some of these constraints are worth an explanation. The semantics of the store
function, as stated above, is such that it cannot change the implicit field created.
Also there is no requirement that the type of the value x should match with the
type of the field f . This liberality necessitates the use of the castA functions in the
semantics of selectA.

It is worth pointing out that the length function is defined for all elements in
DOb ject , not only for elements in DOT where OT is an array type.

Since the semantics of the wellFormed predicate is a bit more involved we put it
separately in Figure 1.13

The integer operations are defined as usual with the following versions of integer
division and the modulo function:

n/M m =



the uniquely defined k such that
|m| ∗ |k| ≤ |n| and |m| ∗ (|k|+1)> |n| and
k ≥ 0 if m,n are both positive or both negative and
k ≤ 0 otherwise if m 6= 0

unspecified otherwise

Thus integer division is a total function with arbitrary values for x/M 0. Division is
an example of a partially fixed function. The interpretation of / in a JFOL structure
M is fixed except for the values x/M 0. These may be different in different JFOL
structures. The modulo function is defined by

mod(n,d) = n− (n/d)∗d

Note, that this implies mod(n,0) = n as / is – due to using underspecification – a
total function.
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1. TRUEM = tt and FALSEM = ff
2. selectMA (h,o, f ) = castMA (h(o, f ))
3. storeM(h,o, f ,x) = h∗, where the function h∗ is defined by

h∗(o′, f ′) =
{

x if o′ = o, f = f ′ and f 6= createdM

h(o′, f ′) otherwise

4. createM(h,o) = h∗, where the function h∗ is defined by

h∗(o′, f ) =
{

tt if o′ = o,o 6= null and f = createdM

h(o′, f ) otherwise

5. arrM is an injective function from Z into FieldM

6. createdM and f M for each Java field f are elements of FieldM, which are pairwise different
and also not in the range of arrM.

7. nullM = null

8. castMA (o) =
{

o if o ∈ AM

arbitrary element in AM otherwise
9. instanceA(o)M = tt⇔ o ∈ AM⇔ δ (o)v A

10. exactInstanceM
A = tt⇔ δ (o) = A

11. lengthM(o) ∈ N
12. 〈o, f ,s〉 ∈ εM iff (o, f ) ∈ s
13. emptyM = /0
14. allLocsM = ObjectM×FieldM

15. singletonM(o, f ) = {(o, f )}
16. 〈s1,s2〉 ∈ subsetM iff s1 ⊆ s2
17. 〈s1,s2〉 ∈ disjointM iff s1∩ s2 = /0
18. unionM(s1,s2) = s1∪ s2
19. infiniteUnion{av}(s)M = {(a ∈ DT | sM [a/av]} with T type of av
20. intersectM(s1,s2) = s1∩ s2
21. setMinusM(s1,s2) = s1 \ s2
22. allFieldsM(o) = {(o, f ) | f ∈ FieldM}
23. allObjectsM( f ) = {(o, f ) | o ∈ ObjectM}
24. arrayRangeM(o, i, j) = {(o,arrM(x) | x ∈ Z, i≤ x≤ j}
25. unusedLocsM(h) = {(o, f ) | o ∈ ObjectM, f ∈ FieldM,o 6= null,h(o,createdM) = false}
26. anonM(h1,s,h2) = h∗, where the function h∗ is defined by:

h∗(o, f ) =

 h2(o, f ) if (o, f ) ∈ s and f 6= createdM , or
(o, f ) ∈ unusedLocsM(h1)

h1(o, f ) otherwise

Fig. 1.12 Semantics for the mandatory JFOL vocabulary (see Figure 1.4) fig:JFOLstructures

h ∈ wellFormedM iff (a) if h(o, f ) ∈ DObject then h(o, f ) = null or h(h(o, f ),createdM) = tt
(b) if h(o, f ) ∈ DLocSet then nh(o, f )∩unusedLocsM(h) = /0
(c) if δ (o) = T [] then δ (h(o,arrM(i)))v T for all 0≤ i < lengthM(o)
(d) there are only finitely many o ∈ DObject for which h(o,createdM) = tt

Fig. 1.13 Semantics for the predicate wellFormed fig:JFOLstructuresWF
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lem:TypeRelSoundComplete Lemma 1.45. The axioms in Figure 1.8 are sound and complete with respect to the
given semantics.

For a proof see
SchmittUlbrich15
[Schmitt and Ulbrich, 2015].

1.4.7 Digression on the Proof of Lemma 1.45

For the convenience of the reader we we include a proof of Lemma 1.45. This is an
extended version of the proof published in

SchmittUlbrich15
[Schmitt and Ulbrich, 2015].

We denote the axioms from Figure 1.8 by T hJT .
We split the proof of Lemma 1.45 into a soundness and a completeness part.

lem:TypAxSound Lemma 1.46. The axioms T hJT are sound with respect to the semantics from Fig-
ures 1.11 and 1.12.

Proof. Let T ∗ be an extension of the type hierarchy T = (TSym,v) and M =
(M,δ , I) be an arbitrary JFOL structure for (T ∗,Σ). We show M |= Ax for all ax-
ioms Ax in T hJT .
ad 1.4.3 Fix an arbitary element o ∈M.
Applying the semantics definition to the lefthand side yields o ∈ instanceM

A ⇔
δ (o) v A. The righthand side is equivalent to the existence of a witness for the
existential quantifier ∃y i.e. to the existence of o′ ∈ AM with o = o′. This is itself
equivalent to o ∈ AM , i.e., to δ (o)v A.
ad 1.4.3 Fix an arbitary element o ∈M.
o ∈ exactInstanceM

A ⇔ δ (o) = A definitinon
⇒ δ (o)v A obvious
⇔ o ∈ instanceM

A definitinon
ad1.4.3 Fix an arbitary element o ∈ M and B ∈ TSym with A 6v B. We have to
show taht we cannot have both o ∈ exactInstanceM

A and o ∈ instanceM
B . Applying

the definition in both cases yields δ (o) =A and δ (o)vB. Together we obtain AvB,
contradicting the choice of B.
ad 1.4.3 Is an immediate consequence of the definition of the castA functions.

We now turn to the completeness part of the proof.
If a (T ,Σ)-structure M satisfies M |= T hJT , then it need not be a Java struc-

ture. The axioms would, e.g., be true if exactInstanceM
A = /0 for all A. To get around

this difficulty we need the following preparatory definitions and lemma.
We will construct for any structure M an adapted structure M a in which the

axioms hold. To this end, some elements of the universe need to be “relocated” into
different types. We will do this using a partial type projection πM ,T : M p−→ T Sym
which is characterised by

πM ,T (o) = A ⇐⇒ o ∈ exactInstanceM
A

and δ (o)v A
and δ (o)v B =⇒ Av B for all B ∈ T Sym .

(1.27) eq:pi-def
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Funtion π is well-defined: Assume there are two A,A′ ∈ T Sym for which the rhs of
the above definition is true. By the third condition we have that Av A′ and A′ v A,
hence, (T is a poset) A = A′.

The idea behind it is that π maps element o to the type it appears to live in (o ∈
exactInstanceM

A ) when looking at it from the perspective of T only. The additional
conditions make this well-defined and ensure that domains in the adapted structure
remain the same.

def:adapt Definition 1.47. Let (T ,Σ) by a Java signature, T ∗ = (TSym∗,v) an extension of
type system T and M = (M,δ , I) a (T ∗,Σ)-structure.
The adapted structure M a = (M,δ a, Ia) for M is the (T a,Σ) structure with

T a = (TSyma,va)

TSyma = TSym∪{To | o 6∈ dom(π)M ,T } for new symbols To

va = transitive closure of vT ∪
{(To,A) | o 6∈ dom(π)M ,T ,A ∈ TSym,δ (o)v A}

δ
a(o) =

{
A if πM ,T (o) = A
To if o 6∈ dom(π)M ,T

Ia( f ) = I( f ) for symbols f ∈ Σ

Ia(instanceTo) = Ia(exanctInstanceTo) = {o} for all o 6∈ dom(π)M ,T

Ia(castTo)(x) = Ia(de f aultTo) = o for all o 6∈ dom(π)M ,T

The first observation we need to make is that the domains for the types in TSym
have not changed, i.e., A ∈ TSym =⇒ AM a

= AM .

Proof. ⇒⇒⇒ Assume o∈ AM a
, that is δ a(o) = Bva A for some B∈ TSyma. If B= To

then to To va A implies by the definition of va) (see part (2) of Lemma 1.19)
that there must be a type C ∈ TSym with δ (o) v C and C v A. Hence, also
δ (o)v A, i.e. o ∈ AM . If B = πM ,T (o) then δ (o)v A by definition of πM ,T .

⇐⇐⇐ Assume o∈AM , that is δ (o) =BvA for some B∈TSym∗. If o∈ dom(π)M ,T ,
then πM ,T (o) is thev-smallest supertype in TSym covering B. Hence, δ a(o) =
πM ,T (o)v A. Part (1) of Lemma 1.19 yields δ a(o)va A and so o ∈ AM a

.
On the other hand, if o 6∈ dom(π)M ,T , then δ a(o) = To and To va B va A (by
definition of va). Again, δ a(o)va A and o ∈ AM a

.
ut

This fact is necessary for the construction to be well-defined. If the domains had
changed, the definition Ia( f ) = I( f ) would not make sense.

The next point is that the axioms (1.4.3) and (1.4.3) correspond directly to the
second and third condition of the definition (1.27) of πM ,T and we get for all o and
A:

M |= T hJT =⇒ (πM ,T (o) = A ⇐⇒ o ∈ exactInstanceM
A ) (1.28) eq:pi-exact
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Proof. We show that under assumption of the axioms, the first condition in (1.27)
implies the other two. Choose o ∈ exactInstanceM

A ) in the following.
Axiom (1.4.3) ensures that o ∈ instanceM

A , and axiom (1.4.3) that δ (o)v A. (see
later more details...)

Assume that the third condition were violated, that is, there is B with δ (o) v B
and A 6v B. But this allows us to use axiom (1.4.3) to obtain o 6∈ instanceM

B and
(again by axiom (1.4.3)) that δ (o) 6v B. Contradiction. ut

lem:adapt Proposition 1.48. Let Σ T , T ∗, T a be as in Definition 1.47 and M a (T ∗,Σ)-
structure satisfying M |= T hJT .

1. The adapted structure M a of M is a Java structure and
2. M |= ϕ ⇐⇒ M a |= ϕ for all (T ,Σ)-formulas ϕ .

Proof.
ad 1. To argue that M a is a Java structure we look separately at items 10, 11, and 9
from Figure 1.12, where A ranges of all type symbols in TSyma.

1. instanceM a

A = {o ∈M | δ a(o)va A}
We have already observed that we have for all A ∈ TSym

AM a
= {o ∈M | δ a(o)va A}= {o ∈M | δ (o)v A}= AM .

For A ∈ TSym we know M |= ∀x(instanceA(x)↔∃y(y
.
= x)) by axiom (1.4.3).

Thus instanceM
A = {o ∈ M | δ (o) v A}. By definition of M a we als know

instanceM a

A = instanceM
A . Together with the initial observation this proves what

we want.
It remains to consider types To for o 6∈ dom(π)M ,T . By definition instanceM a

To
=

{o}.
{o′ ∈M | δ a(o′)va To} = {o′ ∈M | δ a(o′) = To} Lemma 1.19(3)

= {o′ ∈M | o′ = o} Def. of δ a

2. exactInstanceM a

A = {o ∈M | δ a(o) = A}
For A ∈ T Sym the valuation exactInstanceM a

A is the same as exactInstanceM
A

From (1.28), we obtained that πM ,T (o) = A ⇐⇒ o ∈ exactInstanceM a

A .
Let o ∈ exactInstanceM a

A be given. The implication from right to left gives us
that πM ,T (o) = A and also δ a(o) = A (since o ∈ dom(π)M ,T ).
For the opposite direction, assume now that δ a(o) =A. Since A∈TSym, it must
be that o ∈ dom(π)M ,T and πM ,T (o) = A. The implication from right to left
entails o ∈ exactInstaceM a

A .
Finally, if To ∈ T Syma \T Sym is a type introduced in the adapted type system
for o 6∈ dom(π)M ,T , then (by definition of δ a) o is the only element of that
type, and Ia(exactInstance) is defined accordingly.

3. castM
a

A (o) =
{

o if o ∈ AM a

de f aultM
a

A otherwise
For a type A ∈ T Sym, the domain AM a

= AM has not changed; the definition of
δ a reveals that some elements o may now have a new dynamic type To which is
a subtype of A, but this does not modify the extension of the type. We can use
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axiom (1.4.3) to show that the semantics of the cast is precisely the required.
We can use the fact that AM = instanceM a

A established in item 1 and leave the
proof as an easy excercise.
Again for the types not already present in TSym, the definition of Ia fixes the
semantics of the cast symbols correctly.

ad 2.
For the evaluation of a formula, the adaptation M a is indistinguishable from the

original M . Keep in mind that the syntactical material for ϕ is that of (T ,Σ), i.e.,
neither the types in TSym∗ \TSym,TSyma \TSym nor the corresponding function
and predicate symbols will appear in ϕ .

Proof by structural induction over quantifications:

• For any quantifier-free ϕ we have that M ,β |=ϕ ⇐⇒ M a,β |=ϕ . This is a di-
rect consequence of the fact that functions and predicates (in Σ ) are interpreted
identically in M and M a.

• Let ∀x:A. ϕ be a universally quantified formula for A ∈ T Sym. We have:

M ,β |= ∀x. ϕ

⇐⇒ M ,β o
x |= ϕ for all o ∈ AM

i.h.⇐⇒ M a,β o
x |= ϕ for all o ∈ AM

(∗)⇐⇒ M a,β o
x |= ϕ for all o ∈ AM a

⇐⇒ M a,β |= ∀x. ϕ

The essential point is (∗) relying upon that quantifiers range over the same
domains in M and M a. We have observed this already in the proof of the first
point of this proposition.
The case for the existential quantifier is completely analogous.

lem:AxiomsDiff Lemma 1.49. Let M be a (T ,Σ)-structure statisfying M |= T hJT . Then M |=
∀x(exactInstanceA(x)→¬instanceB(x)) for all B ∈ TSym, B 6= A.

Proof. Consider o ∈ M with o ∈ exactInstanceM
A . We aim at o 6∈ exactInstanceM

B
for B 6= A.

We assume by way of contradiction that o ∈ exactInstanceM
B . The axioms T hJT

imply in particular o∈ instanceM
B and o∈ instanceM

A . Again using the axioms these
entail δ (o) v A and δ (o) v B. If δ (o) = B we arrive at B @ A and thus at o 6∈
instanceM

B , contradicting that fact that δ (o) = B implies o ∈ instanceM
B .

If δ (o) @ B we obtain o 6∈ instanceM
δ (o) contradicting the fact that the axioms

imply o ∈ instanceM
δo . ut

The next lemma claims that T hJ is a complete axiomatization of Java structures.

lem:JavaCompleteA Lemma 1.50. Let (T ,Σ) be a Java signature and φ a (T ,Σ) sentence. Then

T hJT |= φ ⇔ for all extensions T ∗ wT and all (T ∗,Σ)-Java-structures M
M |= φ
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Proof. For the implication⇒ from left to right we assume T hJT |= φ and fix an ex-
tension hierachy T ∗wT and a (T ∗,Σ)-Java structure M with the aim of showing
M |= φ . We will succeed if we can show M |= T hJT , i.e. if we can show that the ax-
ioms from Figure 1.8 are true assuming that M is definied according to Figure 1.12.
Axioms (Ax−I) (Ax−C) (Ax−L) are explicit definitions while (Ax−E1) (Ax−E2)
are direct consequences of the semantics of exactInstanceA. For the reverse impli-
cation, ⇐, we assume the lefthand condition and fix an extension T ∗ w T and a
(T ∗,Σ)-structure M with M |= T hJT . We want to arrive at M |= φ . Let M a be
the adapted structure for M as in Definition 1.47. By the first part of Proposition
1.48 we know that M a is a Java structure. By assumption this implies M a |= φ . By
the second part of Proposition 1.48 we get M |= φ . ut

End of Digression on the Proof of Lemma 1.8

1.4.8 Digression on Soundness of Array Theory

lem:ArraySound Lemma 1.51. The taclets in Figure 1.6 are sound with respect to the semantics.

Proof

The three taclets in Figure 1.6 are rewrite rules. So we need to show that for any
JFOL structure M the interpretation in M of the term below the horizontal line
equals the interpretation in M of the term above the horizontal line equals

selectOfStore

Fix an arbitrary JFOL structure M and elements h ∈ DHeap, o,o2 ∈ DOb ject , f , f2 ∈
DField , and x ∈ DAny. We compute selectA(store(h,o, f ,x),o2, f2)

M as follows. By
item 3 in Figure 1.12 h∗ = store(h,o, f ,x)M is given by

h∗(o′, f ′) =
{

x if o′ = o, f = f ′ and f 6= createdM

h(o′, f ′) otherwise
By item 2 in Figure 1.12 selectA(h∗,o2, f2)

M = castMA (h∗(o2, f2)). According to
the definition of h∗ there are 2 cases to be considered.
Case 1 o′ = o2 and f ′ = f2 and f ′ 6= createdM

In this case h∗(o2, f2) = x and selectA(h∗,o2, f2)
M = castMA (x).

Case 2 otherwise
In this case h∗(o2, f2) = h(o2, f2) and selectA(h∗,o2, f2)

M = castMA (h(o2, f2)) =
selectA(h(o2, f2))

M .
This coincides with the evaluation in M of the term to the right of 
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if o .
= o2∧ f .

= f2∧ f 6= created then castA(x) else selectA(h,o2, f2)

selectOfCreate

Fix an arbitrary JFOL structure M and elements h ∈ DHeap, o,o2 ∈ DOb ject , f ∈
DField . We compute selectA(create(h,o),o2, f )M as follows. By item 4 in Figure
1.12 the heap h∗ = create(h,o)M is given by

h∗(o′, f ) =
{

tt if o′ = o,o 6= null and f = createdM

h(o′, f ) otherwise

Thus our task is reduced to the computation of selectA(h∗,o2, f )M , which by item
3 equals h∗(o2, f ).
This coincides with the evaluation in M of the term to the right of 

if o .
= o2∧o ˙6=null∧ f .

= created then castA(TRUE) else selectA(h,o2, f )

selectOfAnon

Fix an arbitrary JFOL structure M and elements h,h′ ∈ DHeap, o ∈ DOb ject , f ∈
DField , and s ∈ dLocSet . We compute selectA(anon(h,s,h′),o, f )M as follows. By
item 26 in Figure 1.12 the heap h∗ = anon(h,s,h′)M is given by

h∗(o, f ) =

h′(o, f ) if (o, f ) ∈ s and f 6= createdM , or
(o, f ) ∈ unusedLocsM(h)

h(o, f ) otherwise

Thus our task is reduced to the computation of selectA(h∗,o, f )M , which by item 3
equals h∗(o, f ).
This coincides with the evaluation in M of the term to the right of 

if(ε(o, f ,s)∧ f ˙6=created)∨ ε(o, f ,unusedLocs(h))
then selectA(h′,o, f ) else selectA(h,o, f )
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1.5 Finite Sequences
sec05:FinSeq

This section develops and explains the theory Tseq of finite sequences. By Seq we
denote the type of finite sequences. The vocabulary Σseq of the theory is listed in
Figure 1.14. We will start with a simple core theory CoTseq and incrementally enrich
it via definitional extensions. Typing of a function symbol f is given as f : A1× . . .×
An→ R with argument types Ai and result type R, typing of a predicate symbol p as
p(A1× . . .×An).

Core Theory
A::seqGet : Seq× int→ A for any type Av Any
seqGetOutside : Any
seqLen : Seq→ int

Variable Binder
seqDef : int× int×Seq→ Seq

Definitional Extension
seqDepth : Seq→ int
seqEmpty : Seq
seqSingleton : Any→ Seq
seqConcat : Seq×Seq→ Seq
seqSub : Seq× int× int→ Seq
seqReverse : Seq→ Seq
seqIndexOf : Seq×Any→ int
seqNPerm(Seq)
seqPerm(Seq,Seq)
seqSwap : Seq× int× int→ Seq
seqRemove : Seq× int→ Seq
seqNPermInv : Seq→ Seq

Fig. 1.14 The vocabulary Σseq of the theory Tseq of finite sequences fig:SigmaSeq

Our notion of a sequence is rather liberal, e.g., 〈5,6,7,8〉 is a sequence, in fact a
sequence of integers. But the heterogeneous, nested list 〈0,〈 /0,seqEmpty,null〉, true〉
is also allowed.

The semantics of the symbols of the core theory will be given in Definition 1.54.
We provide here a first informal account of the intended meaning. The function
value seqLen(s) is the length of list s. Since for heterogeneous lists there is no way
the type of an entry can be recovered from the type of the list, we provide a family
of access functions seqGetA that yields the cast to type A of the i-th entry in list s.
(The concrete, ASCII syntax is A::seqGet, but we stick here with the slightly shorter
notation seqGetA.) The constant seqGetOutside is an arbitrary element of the top
type Any. It is, e.g., used as the value of any attempt to access a sequence outside
its range. seqDef is a variable binder symbol, check Section 1.3.1 for explanation.
Its precise semantics is given in Definition 1.53 below. The reader may get a first
intuition from the simple example seqDef{u}(1,5,u2) that represents the sequence
〈1,4,9,16〉. We will comment on the symbols in the definitional extension, when
we are finished with the core theory following page 63.
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lenNonNegative
∀Seq s;(0≤ seqLen(s))

equalityToSeqGetAndSeqLen
∀Seq s1,s2;(s1

.
= s2 ↔ seqLen(s1)

.
= seqLen(s2) ∧

∀int i;(0≤ i < seqLen(s1)→ seqGetAny(s1, i)
.
= seqGetAny(s2, i)))

getOfSeqDef
∀int i,ri, le;∀Any x̄;(

((0≤ i∧ i < ri− le)→ seqGetA(seqDef{u}(le,ri, t), i) .
= castA(t{(le+ i)/u}))∧

(¬(0≤ i∧ i < ri− le)→ seqGetA(seqDef{u}(le,ri, t), i) .
= castA(seqGetOutside)))

lenOfSeqDef
∀int ri, le;((le < ri→ seqLen(seqDef{u}(le,ri, t)) .

= ri− le)∧
(ri≤ le→ seqLen(seqDef{u}(le,ri, t)) .

= 0))

Fig. 1.15 Axioms of the core theory CoTseq (in mathematical notation) fig:SeqCoreAxiomsMath

The axioms of the core theory CoTseq are shown in Figure 1.15 in mathematical
notation together with the names of the corresponding taclets. In getOfSeqDef the
quantifier ∀Any x̄ binds the variables that may occur in term t.

Definition 1.52 below extends the semantics of type domains given in Figure
1.11 on page 51. More precisely, the definition gives the construction to obtain DSeq

when all other type domains are fixed.

Definition 1.52 (The type domain DSeq). The type domain DSeq is defined via thedefi:SeqDomain
following induction:

DSeq :=
⋃
n≥0

Dn
Seq

where

U = DAny \DSeq

D0
Seq = {〈〉}

Dn+1
Seq = {〈a0, . . . ,ak−1〉 | k ∈ N and ai ∈ Dn

Seq∪U,0≤ i < k} for n≥ 0

The type domain for Seq being fixed we now may deliver on the forward reference
after Definition 1.35 and define precisely the meaning of the variable binder symbol
seqDef{iv}(le,ri,e) in the JFOL structure M . As already done in Section 1.4.6 we
will use the notation tM,β for term evaluation instead of valM,β (t). We further will
suppress β and write tM if it is not needed or not relevant.

defi:seqDefSemantics Definition 1.53.

seqDef{iv}(le,ri,e)M,β =

 〈a0, . . .ak−1〉 if (ri− le)M,β = k > 0 and ai = eM,βi

with βi = β [le+ i/iv] and all 0≤ i < k
〈〉 otherwise

Remember, that β [le+ i/iv] is the variable assignment that coincides with β expect
for the argument iv where it takes the value le+ i.
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The core vocabulary of CoTseq is interpreted as follows:

Definition 1.54.defi:SeqModels

item:SeqGet 1. seqGetMA (〈a0, . . . ,an−1〉, i) =
{

castMA (ai) if 0≤ i < n
castMA (seqGetOutsideM ) otherwise

item:SeqLen 2. seqLenM (〈a0, . . . ,an−1〉) = n
item:seqGetOutside 3. seqGetOutsideM ∈ DAny arbitrary.

To have a name for it we might call a structure M in the vocabulary ΣJ (see Fig-
ure 1.4) plus the core vocabulary of finite sequences a CoreSeq structure, if its re-
striction to the JFOL vocabulary is a JFOL structure as defined in Section 1.4.6 and,
in addition M satisfies Definition 1.54. We observe, that the expansion of a JFOL
structure M0 to a CoreSeq structure is uniquely determined once an interpretation
seqGetOutsideM0 is chosen.

thm:CoTseqConsistent Theorem 1.55. The theory CoTseq is consistent.

Proof. It is easily checked that the axioms in Figure 1.15 are true in all CoreSeq
structures. The explicit construction guarantees that there is at least one CoreSeq
structure.

1.5.1 Digression on Core Consistency

Detailed proof of Theorem 1.55.

Proof. We consider the axioms from Figure 1.15 one by one.
lenNonNegative
∀Seq s(0≤ seqLen(s))
This is obvious by item 2 in Definition 1.54.

equalityToSeqGetAndSeqLen
∀Seq s1,s2(s1

.
= s2↔

seqLen(s1)
.
= seqLen(s2)∧∀Int i(0≤ i < seqLen(s1)→ s1[i]

.
= s2[i]))

Obvious, by definition of DSeq.

getO f SeqDe f
∀Int i,ri, le(((0≤ i∧ i < ri− le)→
seqGetA(seqDef{u}(le,ri, t), i) .

= castA(t{(le+ i)/u}))
∧
(¬(0≤ i∧ i < ri− le)→

seqGetA(seqDef{u}(le,ri, t), i) .
= castA(seqGetOutside)))

Let t a term of type Seq and β a variable assignment with β (i) = ni, β (ri) = nri,
β (le) = nle.
Case 0≤ ni∧ni < nri−nle
By Definitions 1.52 and 1.54
seqGetA(seqDef{u}(le,ri, t), i)M ,β = castMA (tM ,β [nle+ni/u])
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The substitution lemma yields tM ,β [nle+ni/u] = t{(le+ i)/u}M ,β , as desired.
Case (nri−nle)≥ 0∧¬(0≤ ni∧ni < nri−nle)
Definition 1.54 immediately gives:
seqGetA(seqDef{u}(le,ri, t), i)M ,β = castMA (seqGetOutsideM ).
Case (nri−nle)< 0
We note first that the case assumption implies ¬(0≤ ni∧ni < nri−nle). By Defini-
tion 1.53 seqDef{u}(le,ri, t)M ,β = 〈〉. Now, Definition 1.54 gives:
seqGetA(seqDef{u}(le,ri, t), i)M ,β = castMA (seqGetOutsideM ).

lenO f SeqDe f
∀Int ri, le(
(le < ri→ seqLen((seqDef{u}(le,ri, t)) .

= ri− li)
∧
(ri≤ le→ seqLen(seqDef{u}(le,ri, t)) .

= 0))
Let t and β be as in the previous item.
Case (nri−nle)≥ 0
By Definition 1.53 seqDef{u}(le,ri, t)M ,β is of the form 〈a0, . . . ,ak−1〉 with k =
nre−nle. Thus Definition 1.54 yields seqLen(seqDef{u}(le,ri, t))M ,β = k.
Case (nri−nle)< 0
By Definition 1.53 seqDef{u}(le,ri, t)M ,β = 〈〉. ut

End of Digression on Core Consistency

∀Seq s;(∀int i;((0≤ i < seqLen(s)→¬instanceSeq(seqGetAny(s, i)))→ seqDepth(s) .
= 0)∧

∀Seq s;(∀int i;((0≤ i < seqLen(s)∧ instanceSeq(seqGetAny(s, i)))→
seqDepth(s)> seqDepth(seqGetSeq(s, i)))∧

∀Seq s;(∃int i;(0≤ i < seqLen(s)∧ instanceSeq(seqGetAny(s, i)))→
∃int i;(0≤ i < seqLen(s)∧ instanceSeq(seqGetAny(s, i))∧

seqDepth(s) .
= seqDepth(seqGetSeq(s, i))+1)

Fig. 1.16 Definition of seqDepth fig:defSeqDepth

We observe that seqDepth(s) as defined in Figure 1.16 equals the recursive defi-
nition

seqDepth(s) = max{seqDepth(seqGetSeq(s, i)) | 0≤ i < seqLen(s)∧
instanceSeq(seqGetSeq(s, i))}

with the understanding that the maximum of the empty set is 0. Since we have not
introduced the maximum operator we had to resort to the formula given above.
The function seqDepth is foremost of theoretical interest and at the moment of
this writing not realized in the KeY system. seqDepth(s) is an integer denoting
the nesting depth of sequence s. If s has no entries that are themselves sequences
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then seqDepth(s) .
= 0. For a sequence sint of sequences of integers we would have

seqDepth(sint)
.
= 0.

In Figure 1.17 the mathematical formulas defining the remaining noncore vo-
cabulary are accompanied by the names of the corresponding taclets. A few ex-
plaining comments will help the reader to grasp their meaning. The subsequence
seqSub(s, i, j) from i to j of sequence s includes the i-th entry, but excludes the j-
th entry. In the case ¬(i < j) it will be the empty sequence, this is a consequence
of the semantics of seqDe f . The term seqIndexOf (s, t) denotes the least index n
such that seqGetAny(s,n)

.
= t if there is one, and is undefined otherwise. See Sec-

tion 1.3.2 on how undefinedness is handled in our logic. A sequence s satisfies the
predicate seqNPerm(s) if it is a permutation of the integers {0, . . . ,seqLen(s)−1}.
The binary predicate seqPerm(s1,ss) is true if s2 is a permutation of s1. Thus
seqNPerm(〈5,4,0,2,3,1〉) and seqPerm(〈a,b,c〉,〈b,a,c〉) are true.

Careful observation reveals that the interpretation of the vocabulary outside the
core vocabulary is uniquely determined by the definitions in Figures 1.16 and 1.17.

We establish the following notation:

defi:Tseq Definition 1.56. By Tseq we denote the theory given by the core axioms CoTseq plus
the definitions from Figures 1.16 and 1.17.

On the semantic side we call a structure M in the vocabulary ΣJ plus ΣSeq a
Seq structure if the restriction of M to ΣJ is a JFOL structure and M satisfies
Definitions 1.54 and 1.17.

thm:seqTheory Theorem 1.57. The theory TSeq is consistent.

Proof. The consistency of TSeq follows from the consistency of CoTSeq since it is a
definitional extension.

1.5.2 Digression on Definitional Extensions

In this digressive subsection a proof of Theorem 1.57 will eventually be given in
Lemma 1.63. The proof plan is like this: The core theory CoTSeq is consistent. Every
definitional extension of a consistent theory is also consistent. TSeq is a definitional
extension of CoTSeq.

The reference
Monk76,Shoenfield67,EbbinghausFlumThomas07
Monk [1976], Shoenfield [1967], Ebbinghaus et al. [2007] cited

above may not be accessible to everyone, and are also quite dense. We will provide
in this subsection the full theoretical background on this topic.

We need some terminology first.

Definition 1.58 (Conservative Extension). Let Σ0 ⊆ Σ1 be signatures, and Ti set ofdefi:CExt
sentences in FmlΣi .
T1 is called a conservative extension of T0 if for all sentences φ ∈ FmlΣ0 :

T0 ` φ ⇔ T1 ` φ
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defOfEmpty
seqEmpty .

= seqDef{iv}(0,0,x)
x is an arbitrary term of type Any not containing the variable iv.

defOfSeqSingleton
∀Any x;(seqSingleton(x) .

= seqDef{iv}(0,1,x))
defOfSeqConcat
∀Seq s1,s2;(seqConcat(s1,s2)

.
=

seqDef{iv}(0,seqLen(s1)+ seqLen(s2), if iv < seqLen(s1)
then seqGetAny(s1, iv)
else seqGetAny(s2, iv− seqLen(s1)))))

defOfSeqSub
∀Seq s;∀int i, j;(seqSub(s, i, j) .

= seqDef{iv}(i, j,seqGetAny(s, iv)))

defOfSeqReverse
∀Seq s;(seqReverse(s) .

= seqDef{iv}(0,seqLen(s),seqGetAny(s,seqLen(s)− iv−1)))

seqIndexOf
∀Seq s;∀Any t;∀int n;(0≤ n < seqLen(s)∧ seqGetAny(s,n)

.
= t ∧

∀int m;(0≤ m < n→ seqGetAny(s,m) 6= t)
→ seqIndexOf (s, t) .

= n)

seqNPermDefReplace
∀Seq s;(seqNPerm(s)↔

∀int i;(0≤ i < seqLen(s)→∃int j;(0≤ j < seqLen(s)∧ seqGetint(s, j) .
= i)))

seqPermDef
∀Seq s1,s2;(seqPerm(s1,s2)↔ seqLen(s1)

.
= seqLen(s2)∧

∃Seq s;(seqLen(s) .
= seqLen(s1)∧ seqNPerm(s)∧

∀int i;(0≤ i < seqLen(s)→
seqGetAny(s1, i)

.
= seqGetAny(s2,seqGetint(s, i)))))

defOfSeqSwap
∀Seq s;∀int i, j;(seqSwap(s, i, j) .

=
seqDef{iv}(0,seqLen(s), if ¬(0≤ i < seqLen(s)∧0≤ j < seqLen(s))

then seqGetAny(s, iv)
else if iv .

= i
then seqGetAny(s, j)
else if iv .

= j
then seqGetAny(s, i)
else seqGetAny(s, iv)))

defOfSeqRemove
∀Seq s;∀int i;(seqRemove(s, i) .

= if i < 0∨ seqLen(s)≤ i
then s
elseseqDef{iv}(0,seqLen(s)−1, if iv < i

then seqGetAny(s, iv)
else seqGetAny(s, iv+1)))

defOfSeqNPermInv
∀Seq s;(seqNPermInv(s) .

= seqDef{iv}(0,seqLen(s),seqIndexOf (s, iv)))

Fig. 1.17 Definition for noncore vocabulary in mathematical notation fig:SeqAxiomsMath
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Note, if T0 is consistent and T1 is a conservative extension of T0 then T1 is also
consistent.

Definition 1.59 (Semantic Conservative Extension). Let Σ0 ⊆ Σ1 be signatures,defi:SemanticCExt
and Ti sets of sentences in FmlΣi .
T1 is called a semantic conservative extension of T0 if

1. for all Σ1-structures M1 with M1 |= T1 the restriction M0 of M1 to Σ0 is a
model of T0, in symbols

M1 |= T1⇒ (M1 � Σ0) |= T0

2. for every Σ0-structure M0 with M0 |= T0 there is a Σ1-expansion M1 of M0
with M1 |= T1.

Note, in case T0 ⊆ T1 is true, which is the most typical case, but not required in
Definitions 1.58 and 1.59, then item 1 of the preceeding definition is automatically
true.

lemma:SemCExt->CExt Lemma 1.60. Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi .
If T1 is a semantic conservative extension of T0
then T1 is also a conservative extension of T0

Proof. Let φ be a sentence in FmlΣ0 with T0 ` φ . Let M1 be an arbitrary Σ1-
structure. By assumption (M1 � Σ0) |= T0. Thus we also have (M1 � Σ0) |= φ . By
the coincidence lemma we also have M1 |= φ . In total we have shown T1 ` φ .
Now, assume T1 ` φ . If M0 is an arbitrary Σ0-structure there is by the assumption
an expansion of M0 to a Σ1-structure M1. From T1 ` φ we thus get M1 |= φ . The
coincidence lemma tells us again that also M0 |= φ . In total we arrive at To ` φ .

Lemma 1.61 (Extension by Definition). Let Σ0 ⊆ Σ1 be signatures, T0 ⊆ T1 setslem:DefExt
of sentences in FmlΣ0 respectively in FmlΣ1 . Further assume that all sentences in
T1 \T0 are of the form

∀x̄( f (x̄) .
= t) f ∈ Σ1 ⊆ Σ0 t a term in Σ0

∀x̄(p(x̄)↔ φ(x̄) p ∈ Σ1 ⊆ Σ0 φ a formula in Σ0

Then T1 is a semantic conservative extension of T0.

Proof. If M0 is a Σ0-model of T0 we obtain an Σ1-expansion M1 by simply setting

f M1(ā) = tM0(ā)

and
pM1(ā)⇔M0 |= φ [ā]

In the situation of Lemma 1.61 T1 is called an extension by definitions of T0. We tac-
itly assume – of course – that T1 contains only one definition for each new function
or relation symbol.



1.5. Finite Sequences 67

This lemma covers the extensions of CoTseq by all the defining taclets in Fig-
ure 1.17 from de f O f Empty to de f O f SeqNPermInv except seqIndexO f . That the
definition of seqIndexO f leads to a conservative extension is the content of the
following lemma.

Lemma 1.62 (Unique Conditional Extension by Definition). Let Σ0 ⊆ Σ1 be sig-lem:UniqueDefExt
natures, T0 ⊆ T1 sets of sentences in FmlΣ0 respectively in FmlΣ1 . Further assume
that all sentences in T1 \T0 are of the form

∀x̄∀y(ψ → f (x̄) .
= y) f ∈ Σ1 ⊆ Σ0

ψ a formla in Σ0
such that
T0 ` ∀x̄∀y,y′(ψ ∧ψ{y′/y}→ y .

= y′)

Then T1 is a semantic conservative extension of T0.

Proof. We obtain a Σ1 extension M1 of a Σ0 model M0 of T0 by defining

f M1(ā) =
{

b if M0 |= ψ[ā,b]
arbitrary otherwise

Since for any ā there can be at most one b satisfying M0 |= ψ[ā,b] this is a sound
definition.

lem:seqCore1 Lemma 1.63. Tseq is a conservative extension of CoTseq, and thus in particular con-
sistent.

Proof. Inspection of the axioms shows that they are all of the syntactic form re-
quired by Lemma 1.61, except for the definition of seqIndexO f which follows that
pattern offered in Lemma 1.62. The formula to be proved in seqCore is in this case

∀s∀a∀ j, j′(
(0≤ j∧ j < seqLen(s)∧ s[ j] .= a∧∀k(0≤ k∧ k < j→ s[k] 6= a))∧
(0≤ j′∧ j′ < seqLen(s)∧ s[ j′] .= a∧∀k(0≤ k∧ k < j′→ s[k] 6= a))
→ j′ .= j)

This can easily seen to be true.

Suppose we had instead of the partial function seqIndexO f introduced a weaker
version wSeqIndexO f by the definition:

wSeqIndexO f False
∀Seq s∀Any t∀Int n( (0≤ n < seqLen(s)∧ seqGetAny(s,n)

.
= t)

→ wSeqIndexO f (s, t)) .
= n)

The function wSeqIndexO f (s, t) picks any index n with seqGetAny(s,n)
.
= t if there

exists one, instead of the smallest index. This would lead to an inconsistent theory.
For s = 〈5,5〉 one could derive 0 .

= wSeqIndexO f (s,5) .
= 1.
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But, the following defintion would be okay:

wSeqIndexO f 1
∀Seq s∀Any t ∀Int n((0≤ n < seqLen(s)∧ seqGetAny(s,n)

.
= t)→

(0≤ wSeqIndexO f (s, t)< seqLen(s)∧
seqGetAny(s,wSeqIndexO f (s, t)) .

= t))

This is logically equivalent to

wSeqIndexO f
∀Seq s∀Any t (∃Int n((0≤ n < seqLen(s)∧ seqGetAny(s,n)

.
= t)))→

(0≤ wSeqIndexO f (s, t)< seqLen(s)∧
seqGetAny(s,wSeqIndexO f (s, t)) .

= t)

Now, it is obvious that this is just an instance if the classical Skolem extension
lemma which we repeat here for the reader convenience.

lem:skolemExt Lemma 1.64. Let T0 be a Σ0-theory, Σ1 = Σ0∪{ f} where f is a new n-place func-
tion symbol and let T1 be obtained from T0 by adding an axiom of the following
form

∀x̄(∃y(φ)→ φ{ f (x̄)/y})

then T1 is a conservative extension of T0.
Here x̄ is a tupel of variables of the same length n as the argument tupel of f and,
as before φ{ f (x̄)/y} denotes the formula arising from φ by replacing all free oc-
currences of y by f (x̄).

Proof. We show that T1 is a semantic conservative extension of T0. Let M0 be a
model of T0. The structure M1 coincides with M0 for all Σ0-sybols. We define an
interpretation of the symbol f as follows

f M1(ā) =

b if M0 |= ∃y(φ)[ā]
then pick b with M0 |= φ [ā,b]

arbitrary otherwise

Technical note, we use M0 |= φ [ā,b] as a shorthand for (M0,β ) |= φ with the vari-
able assignment defined by β (xi) = ai for 0≤ i < n and β (y) = b.

Obviously, M1 |= ∀x̄(∃y(φ)→ φ [ f (x̄)/y])

1.5.3 Further Results on Definitional Extensions

In some cases the reverse implication of Lemma 1.60 is also true. We proceed to-
wards this result by some preleminary observations.

Definition 1.65 (Expansion). Let Σ0 ⊆ Σ1 be signatures, a Σ1-structure M1 =defi:expansion
(M1, I1) is called an expansion of a Σ0-structure M0 = (M0, I0) if M0 = M1 and
for all f , p ∈ Σ0 I1( f ) = I0( f ) and I1(p) = I0(p).
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Lemma 1.66 (Coincidence Lemma). Let Σ0 ⊆ Σ1 be signatures, and φ ∈ FmlΣ0 .lemma:coincidence
Furthermore let M0 be a Σ0-structure and M1 an Σ1-expansion of M0. Then

M0 |= φ ⇔ M1 |= φ

Proof

Obvious. utThis lemma says that the truth or falisity of a sentence φ in a given
structure only depends on the symbols actually occuring in φ . It is hard to imagine
a logic where this would not hold true. There are in fact, rare cases, e.g., a typed
first-order logic with a type hierachy containing subtypes and abstract types, where
the coincidence lemma does not apply.

Definition 1.67 (Substructure). Let M = (M, I), M0 = (M0, I0) be Σ -structures.defi:substructure
M0 is called a substructure of M iff

1. Mo ⊆M
2. for every n-ary function symbol f ∈ Σ and any n of elements a1, . . . ,an ∈M0

I( f )(a1, . . . ,an) = I0( f )(a1, . . . ,an)

3. for every n-ary relation symbol p ∈ Σ and any n of elements a1, . . . ,an ∈M0

(a1, . . . ,an) ∈ I(p) = (a1, . . . ,an) ∈ I0(p)

lemma:substructure Lemma 1.68. Let M0 be a substructure of M and φ logically equivalent to a uni-
versal sentence. Then

M |= φ ⇒M0 |= φ

Proof

Easy induction on the complexity of φ . ut

defi:MSigma Definition 1.69. Let M be a Σ -structure.
The signature ΣM is obtained from Σ by adding new constant symbols ca for every
element a ∈M.

The expansion of M to a ΣM-structure M ∗ = (M, I∗) is effected by the obvious
I∗(ca) = a.

Definition 1.70 (Diagram of a structure). Let M be a Σ -structure. The diagramdefi:diagram
of M , in symbols Diag(M ), is defined by

Diag(M ) = {φ ∈ FmlΣM |M
∗ |= φ and φ is quantierfree}

lemma:diag Lemma 1.71. Let M be a Σ -structure.
If N |= Diag(M ) then M is (isomorphic to) a substructure of N .
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Proof

Easy. ut

lemma:CExt->SemCExt Lemma 1.72. Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi and
assume that

1. T1 contains only universal sentences and
2. Σ1 \Σ0 contains only relation symbols.

If T1 is a conservative extension of T0
then T1 is also a semantic conservative extension of T0

Proof

We need to show the two clauses in Definition 1.59.
(1): Let M1 be a Σ1-structure with M1 |= T1 and M0 its restriction to Σ0, i.e.,
M0 = M1 � Σ0. For all φ ∈ T0 obviously T0 ` φ . Thus also T1 ` φ and therefore
M1 |= φ . By the coincidence lemma this gives M0 |= φ . Thus, we get M0 |= T0 as
desired.
(2): Here we look at a Σ0-structure M0 with M0 |= T0. We set out to find an expan-
sion M1 of M0 with M1 |= T1. To this end we consider the theory T1∪Diag(M0).
If this theory were inconistent than already T1∪F for a finite subset F ⊆Diag(M0)
would be inconsistent. This is the same as saying T1 ` ¬F . Since the constants ca
do not occur in T1 we get furthermore T1 ` ∀x1, . . . ,xn¬F ′, where F ′ is obtained
from F be replacing all occurences of constants ca by the same variable xi. This is
equivalent to T1 ` ¬∃x1, . . . ,xnF ′. Since T1 was assume to be a conservative exten-
sion of T0 we also get T0 ` ¬∃x1, . . . ,xnF ′ and thus M0 |= ¬∃x1, . . . ,xnF ′. This is a
contradiction since by the definition of Diag(M0) we have M0 |= ∃x1, . . . ,xnF ′ by
instantiating the quantified variable xi that replaces the constant ca by the element
a. This contradiction shows that T1∪Diag(M0) is consistent. Let N be a model of
this theory. By Lemma 1.71 we may assume that M0 is a substructure of (N � Σ0).
Since by assumption only new relation symbols are added when passing from Σ0 to
Σ1 also (N � Σ1) is a substructure of N . By Lemma 1.68 we get (N � Σ1) |= T1.
Obviously, (N � Σ1) is an expansion of (N � Σ0) = M0 and we are finished. ut

1.5.4 Relative Completeness of CoTseq + seqDepth

To formulate the main result of this subsection we need the following auxiliary
definition

defi:SeqFreeStructure Definition 1.73. We call a structure M = (M,δ , I) an sequence free structure if

1. it satisfies all the restrictions on JFOL structure except Definitions 1.52, 1.53,
1.54,
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2. the axioms from Figures 1.15, 1.17, and 1.16 are true in M .
In an sequence free structure M the domains for types other than Seq are still fixed,
in particular the type domain for Int is Z. The next theorem shows that the axioms
are strong enough to enforce that the restrictions from Definitions 1.52, 1.53, 1.54
are satisfied. The proof depends, among others, on the fact that the type domain of
Int is Z.This is, why we call the result a relative completeness result.
Theorem 1.74 (Relative Completness).
Every sequence free structure M is isomorphic to a JFOL structure.thm:seqDepthTheoryComplete

Proof. Let N be an arbitrary sequence free structure. We will construct an iso-
morphism F : N →M for a JFOL structure M . By definition of a sequence free
structure the type universes in N coincide with the type universes in any JFOL
structure for all types except Seq. So let F be the identity function on all those type
universes. It remains to define F from the domain SeqN for type Seq in N into
the type domain DSeq that is common to all JFOL structures. F(a) is defined by
induction on seqDepth(a). If seqDepth(a) = 0 then the axiom from Figure 1.16 im-
plies that a 6∈ SeqN and we had already stipulated F(a) = a in this case. For a with
seqDepthN (a) = n+1 we define inductively

F(a) = 〈F(a[0]), . . . ,F(a[k−1])〉

with k = seqLenN (a), a[i] shorthand for any :: seqGetN (a, i). Since N satisfies
the axiom from Definition in Figure 1.16 we know seqDepthN (a[i]) ≤ n and this
definition is really a valid recursion.

From the core axiom equalityToSeqGetAndSeqLen in Figure 1.15 we get im-
mediately that F thus defined is an injective function. We want to argue that F is
also surjective. We will exhibit for every a ∈ Dn

Seq, by induction on n, a term t such
that F(tN ) = a. For n = 0, we know that a 6∈ SeqN and F(a) = a. In the induc-
tive step of the argument we assume that the claim is true for all a ∈ Dn

Seq and fix
s = 〈s0, . . .sk−1〉 ∈Dn+1

Seq . Since si ∈Dn
Seq for all 0≤ i < k there are elements ai with

F(ai) = si. We define a term t with fresh new variables x0, . . . ,xk−1:

t = if u = 0 then x0 else
(if u = 1 then x1 else
. . .
(if u = k−1 then xk−1) . . .)

Inzerpreting variable xi with ai we obtain. F((seqDef{u}(0,k, t))N ) = s. Note, that
axiom getO f SeqDe f from Figure 1.15 allows for variables in t. In total he have
verified

F : N→M is a bijection (1.29) align:IsoBij

So far we have for the range of F only made use of properties that are true
for all JFOL structures. Now, we fix a particular JFOL structure M by defining
seqGetOutsideM = F(seqGetOutsideN ).
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We need to verify the isomorphism properties of F with respect to the functions
and predicates declared for the data type Seq.

seqGetMAny(F(s), i) = seqGetMAny(〈F(a0), . . . ,F(ak−1)〉, i) Def. of F
= F(ai) if 0≤ i < k Def. of F(seqGetMAny)

= F(seqGetNAny(s, i)) Def.of ai in Def.of F

= seqGetOutsideM if ¬(0≤ i < k) Def. of seqGetMAny
= F(seqGetOutsideN ) Def. of M

In total we have shown F(seqGetNAny(s, i)) = seqGetMAny(F(s),F(i)) remembering
that F(i) = i for integers i.

seqLenM (F(s)) = seqLenM (〈F(a0), . . . ,F(ak−1)〉) Def. of F
= k Def. of seqLenM

= seqLenN (s) Def.of k in Def.of F

In total F(seqLenN (s)) = seqLenM (F(s)).
By induction on n we show that seqDepthN (s) = n iff seqDepthM (s) = n.

For n = 0 we have seqDepthN (s) = 0 iff s 6∈ SeqN iff F(a) = s 6∈ SeqM iff
seqDepthM (s) = 0. If seqDepthN (s) = n+ 1 and ai = seqGetNAny(s) for 0 ≤ i <
seqLenN then we know by the axiom in Figure 1.16

seqDepthN (ai)≤ n for all 1≤ i < seqLenN

seqDepthN (a j) = n for one 1≤ j < seqLenN

By definition of F we have F(s) = 〈F(a0), . . . , f (ak−1)〉 with k = seqLenN (s). By
induction hypothesis we obtain

seqDepthM (F(ai))≤ n for all 1≤ i < seqLenN

seqDepthM (F(a j)) = n for one 1≤ j < seqLenN

which again by the defining axiom for seqDepth now applied for the structure M
yields seqDepthM (s) = n+1.

We omit the proof of the isomorphism property for the remaining 11 functions
(see Figure 1.14). They are easy since their interpretations in both N and M are
fixed by the same definitional extensions. In case of partial functions, we still have
a choice in the precise definition of the JFOL structure M , which we use to make
the isomorphism property true.

Figure 1.18 lists some consequences that can be derived from the definitions in
Figure 1.17 and the Core Theory. The entry 1 is a technical lemma that is useful in
the derivation of the following lemmas in the list. The entry 2 clarifies the role of
the default value seqGetOutside; it is the default or error value for any out-of-range
access. Rules 2 to 7 are schematic rule. These rules are applicable for any instantia-
tions of the schema variable α by a type. Entry 3 addresses an important issue: on
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1 seqSelfDefinition
∀Seq s;(s .

= seqDef{u}(0,seqLen(s),seqGetAny(s,u)))

2 seqOutsideValue
∀Seq s;(∀int i;((i < 0∨ seqLen(s)≤ i)→ seqGetα (s, i)

.
= (α)seqGetOutside))

3 castedGetAny
∀Seq s;∀int i;((β )seqGetAny(s, i)

.
= seqGetβ (s, i))

4 getOfSeqSingleton
∀Any x;∀int i;(seqGetα (seqSingleton(x), i) .

= if i .
= 0 then (α)x else (α)seqGetOutside)

5 getOfSeqConcat
∀Seq s,s2;∀int i;(seqGetα (seqConcat(s,s2), i) .

= if i < seqLen(s)
then seqGetα (s, i)
else seqGetα (s2, i− seqLen(s)))

6 getOfSeqSub
∀Seq s;∀int from, to, i;(seqGetα (seqSub(s, from, to), i) .

= if 0≤ i∧ i < (to− from)
then seqGetα (s, i+ from)
else (α)seqGetOutside)

7 getOfSeqReverse
∀Seq s;∀int from, to, i;(seqGetα (seqReverse(s), i) .

= seqGetα (s,seqLen(s)−1− i))

8 lenOfSeqEmpty
seqLen(seqEmpty) .

= 0

9 lenOfSeqSingleton
∀Any x;(seqLen(seqSingleton(x)) .

= 1)

10 lenOfSeqConcat
∀Seq s,s2;(seqLen(seqConcat(s,s2)) .

= seqLen(s)+ seqLen(s2))

11 lenOfSeqSub
∀Seq s;∀in from, to;(seqLen(seqSub(s, from, to)) .

= if from < to then (to− from) else 0)

12 lenOfSeqReverse
∀Seq s;(seqLen(seqReverse(s)) .

= seqLen(s))

13 seqConcatWithSeqEmpty
∀Seq s;(seqConcat(s,seqEmpty) .

= s)

14 seqReverseOfSeqEmpty
seqReverse(seqEmpty) .

= seqEmpty

Fig. 1.18 Some derived rules for finite sequences fig:DerivedSeqMath

one hand there is the family of function symbols seqGetα , on the other hand there
are the cast expressions (α)seqGetAny. The lemma says that both coincide. The en-
tries 4 to 12 allow to determine the access function and the length of the empty
sequence, singleton, concatenation, subsequence and reverse constructors. The last
two entries 13 and 14 are examples for a whole set of rules that cover corner cases
of the constructors involved.

Figure 1.19 lists some derived rules for the one-place predicate seqNPerm and
the two-place predicate seqPerm that follow from the definitions in Figure 1.17.
Surprisingly, none of the proofs apart from the one for seqNPermRange needs
induction. This is mainly due to the presence of the seqDef{}(, ,) construct. The
lemma seqNPermRange itself is a kind of pigeon-hole principle and could only be
proved via induction.
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1 seqNPermRange
∀Seq s;(seqNPerm(s)→
∀int i;(0≤ i∧ i < seqLen(s)→ (0≤ seqGetint(s, i)∧ seqGetint(s, i)< seqLen(s))))

2 seqNPermInjective
∀Seq s; (seqNPerm(s)∧
∀int i, j;(0≤ i∧ i < seqLen(s)∧0≤ j∧ j < seqLen(s)∧ seqGetint(s, i)

.
= seqGetint(s, j))

→ i .
= j)

3 seqNPermEmpty
seqNPerm(seqEmpty)

4 seqNPermSingleton
∀int i;(seqNPerm(seqSingleton(i))↔ i .

= 0)

5 seqNPermComp
∀Seq s1,s2;(seqNPerm(s1)∧ seqNPerm(s2)∧ seqLen(s1) .

= seqLen(s2)→
seqNPerm(seqDef{u}(0,seqLen(s1),seqGetint(s1,seqGetint(s2,u)))))

6 seqPermTrans
∀Seq s1,s2,s3;(seqPerm(s1,s2)∧ seqPerm(s2,s3)→ seqPerm(s1,s3))

7 seqPermRefl
∀Seq s;(seqPerm(s,s))

Fig. 1.19 Some derived rules for permutations fig:DerivedPermMath

Applications of the theory of finite sequences can be found in Section 16.5 and
foremost in the chapter on Radix Sort in the KeY book.
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