
Why3
where programs meet provers

Jean-Christophe Filliâtre
CNRS

KeY Symposium 2017

Rastatt, Germany
October 5, 2017

history

started in 2001, as an intermediate language in the process of
verifying C and Java programs (∼ Boogie)

today, joint work with

• François Bobot (CEA)

• Claude Marché (Inria)

• Guillaume Melquiond (Inria)

• Andrei Paskevich (Univ Paris Sud)

an intermediate language

Why3

automated theorem provers

CVC4, Alt-Ergo, Z3, Yices,

E, SPASS, Vampire, Gappa, etc.

proof assistants

Coq, PVS, Isabelle

Java code

Krakatoa

C code

Frama-C
Ada code

Spark2014EasyCrypt

CAOVerif Atelier B

and a language of its own

Why3 features a full-fledged programming language

programs can be translated to OCaml automatically

contributions

Why3 uses well-known techniques (e.g. weakest preconditions)
and off-the-shelf provers

most our R&D is focused on the design of a logic, a programming
language, and a library dedicated to program verification

designing a logic

designing a logic

a total, polymorphic first-order logic, with

• algebraic data types and pattern matching

• recursive definitions

• (co)inductive predicates

• mapping type α→ β, λ-notation, application

[FroCos 2011, CADE 2013, VSTTE 2014]

types

• polymorphic types

type set ’a

• tuples

type poly pair ’a = (’a, ’a)

• records

type complex = { re: real; im: real }

• sums

type list ’a = Cons ’a (list ’a) | Nil

records

• access to record fields

function get real (c: complex) : real = c.re

function use imagination (c: complex) : real = im c

• record reconstruction

function conjugate (c: complex) : complex =

{ c with im = - c.im }

pattern matching and recursive definition

function length (l: list ’a) : int =

match l with

| Cons _ ll -> 1 + length ll

| Nil -> 0

end

termination is checked automatically

inductive predicates

inductive sorted (l: list int) =

| SortedNil: sorted Nil

| SortedOne: forall x: int. sorted (Cons x Nil)

| SortedTwo: forall x y: int, l: list int.

x <= y -> sorted (Cons y l) ->

sorted (Cons x (Cons y l))

(the smallest predicate satisfying these three axioms)

abstract data types and axiomatization

theory Set

type set ’a

predicate mem ’a (set ’a)

constant empty: set ’a

axiom empty def: forall x: ’a. not (mem x empty)

predicate subset (s1 s2: set ’a) =

forall x: ’a. mem x s1 -> mem x s2

lemma subset refl: forall s: set ’a. subset s s

...

designing a programming language

designing a programming language

∼ small subset of OCaml

• polymorphism

• pattern matching

• exceptions

• mutable data with controlled aliasing [ESOP 2013]

• ghost code and ghost data [CAV 2014]

• contracts, loop and type invariants

example

let rec f91 (n: int) : int

ensures { result = if n <= 100 then 91 else n - 10 }

variant { 101 - n }

= if n <= 100 then

f91 (f91 (n + 11))

else

n - 10

ghost code

ghost code/data eases the specification and the proof

ghost code should not interfere with regular code

• regular code cannot see ghost data

• ghost code cannot mutate regular data

• ghost code cannot raise exceptions

• ghost code must terminate

the system checks the non-interference [CAV 2014]

ghost code

• function parameters

let f (a b n: int) (ghost k: int): int = ...

• record fields

type queue ’a = { head: list ’a;

tail: list ’a;

ghost elts: list ’a; }

invariant { elts = head ++ reverse tail }

• variables and functions

let ghost x = q.head in ...

let ghost rev elts q = q.tail ++ reverse q.head

• program expressions

let x = ghost q.head in ...

lemma functions

idea: a ghost function

f ~x requires P ensures Q

with no side effect and terminating
is a constructive proof of

∀~x .P ⇒ Q

example

you have defined

function rev append (l r: list ’a): list ’a = match l with

| Nil -> r

| Cons a ll -> rev append ll (Cons a r) end

and you want to prove

∀ l r. length (rev append l r) = length l + length r

this requires induction

solution: a recursive lemma function

let rec lemma length rev append (l r: list ’a)

ensures { length (rev append l r) = length l + length r }

variant { l }

= match l with Nil -> ()

| Cons a ll -> length rev append ll (Cons a r) end

• you prove it correct, as with any function

• the lemma ∀l r . . . is added to the context

• still available as a ghost function, to be called explicitly

mutable data

record fields can be declared mutable

e.g. OCaml’s mutable variables, aka references

type ref ’a = { mutable contents: ’a }

function (!) (r: ref ’a) : ’a = r.contents

let ref (v: ’a) = { contents = v }

let (!) (r: ref ’a) = r.contents

let (:=) (r: ref ’a) (v: ’a) = r.contents <- v

mutable records

• can be passed to functions and returned

• can be created locally and declared globally
I let r = ref 0 in while !r < 42 do ...
I val gr: ref int

• can store ghost data
I let ghost r = ref 42 in ...

• can be nested
but are disallowed in recursive types (i.e. no list (ref ’a))
and abstract types (i.e. no set (ref ’a))

aliases

Why3 keeps track of all aliases, statically,
using a type system with effects

motivation: keep using traditional WP,
without resorting to a memory model

consequence: some programs are rejected by the type checker

designing a library

a logic library

includes

• integers, real numbers, sets, maps, sequences

• option type, lists, binary trees

• higher-order operators, e.g.

sum f a b =
∑

a≤i<b

f(i)

numof p a b = card{i | a ≤ i < b ∧ p(i)}

a programming library

includes

• references, arrays, stacks, queues

• floating-point arithmetic [ARITH 2007]

• machine integers
I how to prove the absence of overflows [VSTTE 2015]

demo

maximum subarray problem

given an array of integers,
find the contiguous subarray with the largest sum

example:

2 2 -5 4 -1 2 1 -5 4︸ ︷︷ ︸
6

note: zero-length subarrays are allowed,
and maximal when all elements are negative

Kadane’s algorithm

there is a nice, linear time, constant space solution due to Jay
Kadane (1977)
(the whole story can be found in Jon Bentley’s Programming Pearls)

idea: scan the array, maintaining both the maximum so far and the
maximum ending at the scanning position

4︷ ︸︸ ︷ ↓
2 2 -5 4 -1 2 1 -5 4︸ ︷︷ ︸

3

gallery of verified programs

http://toccata.lri.fr/gallery/why3.en.html

more than 130 examples

• data structures: AVL, red-black trees, skew heaps, Braun
trees, ropes, resizable arrays, etc.

• sorting, graph algorithms, etc.

• solutions to most competition problems (VSComp, VerifyThis)

http://toccata.lri.fr/gallery/why3.en.html

under the hood

under the hood

a technology to talk to provers

central concept: task

• a context (a list of declarations)

• a goal (a formula) goal

workflow

theory

end

theory

end

theory

end

Alt-Ergo

Z3

Vampire

workflow

theory

end

theory

end

theory

end

goal

Alt-Ergo

Z3

Vampire

workflow

theory

end

theory

end

theory

end

goal goal

Alt-Ergo

Z3

Vampire

T1

workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2

workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2 P

logical transformations

• eliminate algebraic data types and match-with

• eliminate inductive predicates

• eliminate if-then-else, let-in

• encode polymorphism, encode types

• etc.

efficient: results of transformations are memoized

prover driver

a task journey is driven by a file

• transformations to apply

• prover’s input format
I syntax
I predefined symbols
I axioms to be removed

• prover’s diagnostic messages

more details: Why3: Shepherd your herd of provers [Boogie 2011]

example: Z3 driver (excerpt)

printer "smtv2"

valid "^unsat"

invalid "^sat"

transformation "inline trivial"

transformation "eliminate builtin"

transformation "eliminate definition"

transformation "eliminate inductive"

transformation "eliminate algebraic"

transformation "simplify formula"

transformation "discriminate"

transformation "encoding smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn

syntax type int "Int"

syntax type real "Real"

syntax predicate (=) "(= %1 %2)"

meta "encoding : kept" type int

end
...

proof sessions

proofs are stored into an XML file and read/written/updated by
various tools

why3 ide

OCaml API

proof
session

why3 replay yes/no

why3 session

LATEX
HTML

...

more details:
Preserving User Proofs Across Specification Changes [VSTTE 2013]

and many other things

• running Why3+Alt-Ergo in your browser

• Python frontend for teaching purposes

• Why3’s OCaml API [BOOGIE 2011]

• proof by reflection [VSTTE 2016]

• logical connectives by and so

• checking the consistency of our library using Coq

• extraction to C

