
Smart Contracts: Application Scenarios for
Deductive Program Verification

Bernhard Beckert, Jonas Schiffl, and Mattias Ulbrich

Karlsruhe Institute of Technology, Karlsruhe, Germany
bernhard.beckert@kit.edu, jonas.schiffl@kit.edu, mattias.ulbrich@kit.edu

Abstract. Smart contracts are programs that run on a distributed led-
ger platform. They usually manage resources representing valuable as-
sets. Moreover, their source code is visible to potential attackers, they
are distributed, and bugs are hard to fix. Thus, they are susceptible to
attacks exploiting programming errors. Their vulnerability makes a rig-
orous formal analysis of the functional correctness of smart contracts
highly desirable.
In this short paper, we show that the architecture of smart contract
platforms offers a computation model for smart contracts that yields
itself naturally to deductive program verification. We discuss different
classes of correctness properties of distributed ledger applications, and
show that design-by-contract verification tools are suitable to prove these
properties. We present experiments where we apply the KeY verification
tool to smart contracts in the Hyperledger Fabric framework which are
implemented in Java and specified using the Java Modeling Language.

1 Introduction

Smart contracts are programs that work in conjunction with a distributed ledger.
They automatically manage resources on that ledger. Multiple distributed ledger
platforms supporting smart contracts have been developed, most prominently
the public Ethereum blockchain. Smart contracts manage resources representing
virtual or real-world assets. Their source code is visible to potential attackers.
Therefore, they are susceptible to attacks exploiting errors in the program source
code. Furthermore, smart contracts cannot be easily changed after deployment.
They need to be correct upon deployment, and formal methods should be used
for ensuring their correctness [3].

In this paper, we describe the computational model of smart contracts, which
makes them an ideal target for deductive program verification. We discuss dif-
ferent notions of smart contract correctness, and the implications for formal
verification.

We focus on the Hyperledger Fabric [4] architecture. Fabric is a framework
for the operation of private, permission-based distributed ledger networks. Smart
contracts in Fabric can currently be written in Go, Java, and Javascript. While
our concrete verification efforts target Fabric smart contracts written in Java,



much of the concepts can be generalized to other programming languages, and
also to other smart contract platforms.

The KeY system [1], which we used for experiments, is a deductive program
verification tool for verifying Java programs w.r.t. a formal specification. KeY fol-
lows the principle of design-by-contract, i.e., system properties are broken down
into method specifications called contracts that must be individually proven cor-
rect. Specifications for KeY are written in the Java Modeling Language [7], the
de-facto standard language for formal specification of Java programs. For ver-
ification, KeY uses a deductive component operating on a sequent calculus for
JavaDL, a program logic for Java.

In Section 2, we describe an abstract computational model for applications
in a distributed ledger architecture. In Section 3, we discuss different notions
and classes of smart contract correctness w.r.t. that model. Then, in Section 4,
we describe how properties from these classes can be verified in the KeY tool.
Finally, we draw some conclusions and discuss future work in Section 5.

2 Distributed Ledger Infrastructure and the
Computational Model

Smart contract platforms are complex systems. Their functionality is spread
across several layers and components. Some components are by necessity part of
every smart contract platform, other components are unique to certain types of
smart contract systems.

The correct behavior of a smart contract depends on all components of
the distributed ledger architecture. This includes: the implementation of the
blockchain data structure, which ensures that the shared history cannot be
changed; the consensus and ordering algorithms for creating a single view of
the system state; the cryptography modules for chain integrity and the public
key infrastructure; and the network layer, which ensures correct distribution of
transaction requests and new blocks.

If all these components work correctly, they provide an abstract computa-
tional model for the execution of smart contract applications in a distributed
ledger system. This computational model can be described as follows: a dis-
tributed ledger platform behaves like a (non-distributed) single-core machine
which takes requests (in the form of function calls) from clients. The execution
of a request (a transaction) is atomic and sequential. The machine’s storage is
a key-value database in which serialized objects are stored at unique addresses.
The storage can only be modified through client requests. The overall state of
the storage is determined entirely by the order in which requests are taken. No
assumptions can be made about the relationship between the order of requests
made by the clients and the actual order of execution. However, it can be as-
sumed that every request is eventually executed. All requests are recorded, even
if they do not modify the state or are malformed.



3 Correctness of Smart Contracts

In the previous section, we have described the abstraction provided by smart con-
tract architectures: it behaves like a single-core machine operating on a database
storage and taking requests from clients. In this section, we discuss how this ab-
straction is useful for applying program verification techniques and tools. We
give an overview of different classes of smart contract correctness properties and
characterize the requirements and challenges for formal analysis that each class
entails. The properties are roughly ordered by the effort required to prove them.
Existing approaches to verification of smart contracts are given as examples for
each class.

3.1 Generic Properties

Generic properties are independent of the concrete smart contract application
and its functionality, i.e., there is no need to write property specifications for
individual contracts. Typical examples of generic properties are termination for
all inputs and absence of exceptions such as null-pointer dereference.

Program properties such as termination are undecidable in general, and
proofs may be non-trivial and require heavy-weight verification tools. Never-
theless, many generic properties can be validated by syntactical methods like
type checking or simple static analysis. They are less precise than program ver-
ification and produce false alarms in case of doubt, but are still very useful in
practice. Especially in the context of Ethereum, there is a wide variety of static
analysis tools, e.g. [8,9], that can show the absence of known anti-patterns or vul-
nerabilities, like the notorious reentrance vulnerability, or inaccessible funds. For
Hyperledger Fabric, there exists a tool which statically checks a smart contract
for anti-patterns like non-determinism or local state.1

3.2 Specific Correctness Properties of Single Transactions

Correctness of a smart contract applications cannot be captured by generic prop-
erties alone: there has to be some formal specification which expresses the ex-
pected resp. required behavior of a program. Smart contract functions, which
are atomic and deterministic in our computational model, are the basic modules
of smart contracts (much like methods are basic components of programs), and
therefore also the basic targets for correctness verification. The specification of
a function consists of a precondition, which states what conditions the caller of
the function has to satisfy, and a postcondition expressing what conditions are
guaranteed to hold after the transaction (i.e., the function execution). In case
of smart contracts, the specification should generally treat public ledger state
and function call parameters as potentially malicious; therefore, the precondition
should make no assumptions about them, as correctness properties must hold
for all possible values.
1 https://chaincode.chainsecurity.com/

https://chaincode.chainsecurity.com/


Examples of specific properties of a single transaction include functional cor-
rectness statements (e.g., “the specified amount is deducted from the account
if sufficient funds are available, otherwise the account remains unchanged”) and
statements about what locations on the ledger a transaction is allowed to modify.

An approach to verification of single transaction correctness using the Why3
verification platform has been proposed [6]; our own approach using the KeY
tool is discussed in Section 4.

3.3 Correctness of Distributed Ledger Applications

While transactions are equivalent to individual program functions, a distributed
ledger application (DLA) is equivalent to a reactive program whose functions
can be called by external agents. Informally, a DLA is a part of a smart contract
network concerned with one specific task, like running an auction or providing
a bank service. More precisely, a DLA is the set of all transactions that can
affect a given set of storage locations (including transactions that cannot access
a storage location but are used in the calculation of the values being written).

While correctness of the component transactions is a necessary pre-requisite
for the correctness of the DLA, there are properties which inherently are proper-
ties of transaction traces. They cannot be readily expressed as correctness prop-
erties of single transactions. To break them down into a set of single-transaction
properties is a non-trivial process. Examples for this class of properties include
invariants (e.g., “the overall amount of funds stays the same” for a banking ap-
plication) and liveness properties giving the guarantee that some condition will
eventually be fulfilled. Complex properties of this kind typically are expressed
in temporal logic.

4 Verification of Smart Contracts Using the KeY Tool

In this section, we discuss verification of smart contract correctness using the
KeY tool. The abstract computational model devised in Section 2 is an excellent
fit for KeY because, in this setting, a distributed ledger application can be viewed
as the equivalent of a Java program where single transactions correspond to Java
methods. Thus, the KeY tool, which is designed for verifying Java programs,
can be utilized for DLA verification, requiring only minor adaptations. These
adaptations mostly concern the nature of the storage, since KeY operates on a
heap with object references, while the distributed ledger application’s storage
is a database of serialized objects. Furthermore, due to the unknown order of
execution and the fact that different agents operate within the shared program,
there cannot be any assumptions as to the contents of the storage or order of
transaction execution.

4.1 Generic Properties

The KeY tool can be used to verify any generic property. As a heavy-weight
verification tool, it is particularly useful for properties that cannot be handled



by light-weight tools resp. that require KeY’s higher precision to avoid too many
false alarms. Examples are program termination and the absence of exceptional
behavior (the Java Modeling Language keyword normal_behavior can be used
to specify that a method terminates without exception).

While constructing proofs for such properties is a non-trivial task in general,
typical smart contracts are compact and lack complex control flows. In such
settings, proofs of termination and absence of exceptions can be expected to be
found automatically by KeY, requiring none or minimal auxiliary specifications.

4.2 Chaincode Transaction Correctness

Verification of Hyperledger Fabric chaincode functions, if written in Java, is
possible in KeY. The difference between a normal Java program and our com-
putational model is in the storage: while Java programs operate on a heap, a
Fabric Smart Contract operates on an (abstracted) key-value database storing
serialized objects. In a case study [5] demonstrating how to use KeY to prove
the correctness of Hyperledger Fabric chaincode functions, this difference was
addressed by an extension of the KeY tool,2 including an axiomatisation of the
read/write interface of the Fabric ledger, a model of the ledger on a logical
level, and the introduction of abstract data types for each type of object that is
managed by the smart contract.

In the auction example, one might want to specify the closeAuction()
method as follows:

/*@ ensures read(ID) != null ==> read(ID).closed;
@ ensures (\forall Item i \in read(ID).items;
@ i.owner_id == read(ID).highestBidderID);@*/

void closeAuction(int ID) { ... }

This JML specification is somewhat simplified for readability; the read func-
tion is an abstraction for accessing the ledger, i.e., reading and deserializing the
object at the given location. The specification states that, if the auction object
at ID is not null, then after execution of the closeAuction()method the closed
flag must be correctly set; furthermore all items in the auction must belong to
the highest bidder (as indicated by the owner_id attribute). For the correctness
proof in KeY, the logical rules necessary for handling the data types stored on
the ledger (in this case, auctions, items, and participants) are created automati-
cally. The proof requires some user interaction, since the new rules have not yet
been included in the automation mechanism of the prover.

There exists a comparable approach for using KeY to verify Ethereum smart
contracts [2].

4.3 Correctness of Distributed Ledger Applications

More complex properties can be reasoned about in KeY using class invariants,
two-state invariants, and counters, thereby reducing complex properties of trans-
action traces (including temporal logic properties) to KeY’s method-modular
2 Available at https://key-project.org/chaincode

https://key-project.org/chaincode


approach. For example, the specification of the auction application could state
that, as long an auction is open, the items that are offered still belong to the
auctioneer:

//@ invariant (\forall Auction a; !a.closed;
(\forall item i \in a.items; i.owner_id == a.auctioneer_id));

If every bidder has to deposit the funds for their bid in the auction, the
specification could state that as long as the auction remains open, the sum of
the funds in the auction remains the same or increases, but never decreases. This
can be expressed with a history constraint:

//@ constraint \forall Auction a; !a.closed; \old(a.funds) <= a.funds;

Though this constraint can easily be expressed in the Java Modeling Language,
proving in KeY that a smart contract conforms to this specification is currently
infeasible due to the large amount of user interactions that is necessary to close
the proof, and due to the inefficiencies of our current approach regarding the
handling of reading from and writing to the ledger.

5 Conclusion and Future Work

We have outlined the setting in which deductive program verification of dis-
tributed ledger applications takes place and shown that the KeY verification
tool is suitable to prove different classes of correctness properties which are in-
teresting in smart contract platforms.

The extensions to KeY which enable verification of Hyperledger Fabric smart
contracts are still in a prototypical state. Further improvements are necessary
to improve scalability and enable proofs of more complex properties.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive Software Verification - The KeY Book. Springer (2016)

2. Ahrendt, W., Bubel, R., Ellul, J., Pace, G.J., Pardo, R., Rebiscoul, V., Schneider,
G.: Verification of smart contract business logic. In: FSEN 2019, To appear. (2019)

3. Ahrendt, W., Pace, G.J., Schneider, G.: Smart Contracts: A Killer Application for
Deductive Source Code Verification. In: Principled Software Development (2018)

4. Androulaki, E., Vukolić, M., et al.: Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains. EuroSys ’18, ACM (2018)

5. Beckert, B., Herda, M., Kirsten, M., Schiffl, J.: Formal Specification and Verification
of Hyperledger Fabric Chaincode. In: SDLT (2018)

6. Bhargavan, K., et al.: Formal Verification of Smart Contracts: Short Paper. In:
PLAS’16. ACM Press, Vienna, Austria (2016)

7. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual (2013)

8. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding The Greedy, Prodi-
gal, and Suicidal Contracts at Scale. ACSAC ’18, ACM (2018)

9. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: ACM SIGSAC (2018)


	Smart Contracts: Application Scenarios for Deductive Program Verification

