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Abstract. Formal verification of compiler correctness requires substan-
tial effort. A particular challenge is lack of modularity and automation.
Any change or update to the compiler can render existing proofs obsolete
and cause considerable manual proof effort. We propose a framework for
automatically proving the correctness of compilation rules based on si-
multaneous symbolic execution for the source and target language. The
correctness of the whole system follows from the correctness of each com-
pilation rule. To support a new source or target language it is sufficient
to formalize that language in terms of symbolic execution, while the
corresponding formalization of its counterpart can be re-used. The cor-
rectness of translation rules can be checked automatically. Our approach
is based on a reduction of correctness assertions to formulas in a program
logic capable of symbolic execution of abstract programs. We instantiate
the framework for compilation from Java to LLVM IR and provide a
symbolic execution system for a subset of LLVM IR.

1 Introduction

Writing correct programs is hard. All the more painful it is, when a program with
semantically correct source code does not execute as expected due to a compiler
bug. Happily, this is not a common experience to programmers. Still, commonly
used compilers, like any complex software product, do contain bugs [12]; and
for safety-critical settings, one might just not want to take the chance. Testing
compilers can only show the presence, but not the absence of bugs. A more am-
bitious undertaking is the construction of a verified compiler, as carried out in
the CompCert project [13], Jinja [10] or the more recent CakeML [18]. In these
approaches, the compiler is programmed in the executable language fragment
of an interactive proof assistant and proven correct relative to a mechanized se-
mantics of the source and target language. Such interactive approaches involve
a significant amount of work for the construction of proof scripts alone (44%
of all code in CompCert [13], for example). In addition, it is not easy to keep
proofs modular in the sense that arguing the correctness of compilation of one
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assgnPVTransl
(U ◦ (x := y), C, π ω a` qn)@(obs)

(U , C, π x=y; ω a`
(
q 2n

(
%0 = load i32, i32* %y
store i32 %0, i32* %x

))(n)
)@(obs)

Fig. 1: Translation rule for a variable assignment

language construct is not dependent on another. Here we lay down a theoretical
framework of a modular, verified compilation approach that avoids these issues:
(1) In compiler verification, local changes to syntax or semantics of source or tar-
get language as well as to compilation rules, are likely to affect the correctness
proof globally. We avoid this by a rule-driven approach wherein local changes
are confined to a single rule. (2) Proofs in assistants like Coq and Isabelle/HOL
are mostly interactive. When adding support for new source elements or another
front- or backend, new interactive proofs have to be constructed for the transla-
tion and existing ones might have to be adapted. In our rule-driven approach it
is sufficient to add new rules whose correctness proofs, moreover, are automatic.

The paper is structured as follows. Next we give an informal overview of our
approach. In Sect. 3, we introduce our logical foundation and Symbolic Execution
semantics. Sect. 4 presents our formalization of a subset of LLVM IR. Central
definitions and correctness properties of translation rules, as well as example
rules for translation of Java to LLVM IR, are given in Sect. 5. In Sect. 6, we
describe how to handle loops. Finally, we discuss related work in Sect. 7 and
present a conclusion and outlook in Sect. 8.

2 Overview

Our approach is based on Symbolic Execution (SE) [5]. The compiler is defined
by a set of translation rules, each of which realizes simultaneous SE of an as-
pect of the source and target language. An example of a rule assgnPVTransl for
variable assignment is shown in Fig. 1. The rule expresses that the highlighted
code fragments in Java and LLVM IR have the same effect (on a symbolic set
of observable variables obs), namely setting the value of variable x to the value
of y in an existing (symbolic) store U . An alternative interpretation is that the
Java fragment can be compiled in a behavior-preserving manner to the LLVM IR
fragment. Compilation works in two phases: We symbolically execute the source
program, then apply translation rules to the resulting Symbolic Execution Tree
in a leaves-to-root manner to obtain the compiled program. Besides the high
modularity of our system due to its rule-based nature, an important advantage
is that we can prove the correctness of rules like assgnPVTransl automatically.
Prerequisite is a formalization of the source and the target language in terms
of SE rules.1 The program fragments occurring in translation rules are typically
abstract, because they contain placeholders for subprograms (e.g., the guard and

1 Compiler verification with interactive proof assistants requires this as well, even
separate formalizations for the target and source languages.
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body of an if statement), as well as premises with assumptions about them.
We obtain correctness results for translation rules by reflecting correctness as-
sertions to a program logic capable of symbolically executing the abstract source
and target programs of a rule. The resulting assertions can be proven by an
automatic program verifier.

The logical basis of our approach is a new formalization of SE for abstract
programs based on a notion of concretization and a definition of soundness of
SE transition relations. We instantiate our framework for compilation from Java
to LLVM IR. This choice is motivated by the following considerations: For Java,
we can build on a mature SE system based on Java Dynamic Logic (JavaDL) [1]
which suits our needs very well. LLVM IR [11] is the intermediate language of the
state-of-the-art LLVM optimizing compilation framework, which is employed in
a variety of commercial and open source products as well as academic research
prototypes. The language comes with attractive properties: it is typed and uses
an unbounded number of temporary registers instead of a stack. Finally, as far
as we know, there is no compiler from Java to LLVM IR currently maintained.

Extending our compiler framework, for example, with a new target lan-
guage, is achieved by providing that language’s formalization in terms of SE
rules (which, as a byproduct, can also be used for different purposes, such as
program verification). The compilation rules defined below are proven without
assistance. The compiler is, therefore, correct-by-construction. Our main contri-
bution is a theoretical framework consisting of (1) a semantic foundation for SE
of abstract programs, (2) a new, partial formalization of LLVM IR, and (3) the-
oretical results about proving the correctness of translation rules, illustrated by
the compilation of Java to LLVM IR.

3 Program Logic and Symbolic Execution

Symbolic Execution [5] is a popular static program analysis technique that treats
inputs to a program as abstract symbols. Whenever the execution depends on
the concrete value of a symbolic variable, it performs a case distinction, fol-
lowing each possible branch individually. The outcome is a Symbolic Execution
Tree (SET) whose root is labeled with the program under execution. Inner nodes
are constructed by individual SE steps. The version of SE used in this paper con-
sists of a static symbolic interpreter embedded in a logical framework—Dynamic
Logic (DL): an extension of typed first-order logic for expressing assertions about
program behavior, inspired by features of JavaDL [1, Chapter 3], a DL for Java.

The principles of our logic are general enough to be re-used for different lan-
guages, such as C# or Java bytecode. The translation rule in Fig. 1 highlights a
central concept of our logic: The assignment of the variable y to x corresponds
to a state update x := y. Updates describe state changes resulting from symbolic
program execution. Elementary updates x := t syntactically represent the state
changes where the variable x attains the value of the term t. Updates can be
combined to parallel updates x := t1 || y := t2, and be applied to terms, for-
mulas and other updates. We write {U}t for the application of U to term t.
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Semantically, t is evaluated in the state represented by U . The “empty update”
is denoted by Skip. Our term language contains conditional terms; for instance,
(if (i > j ) then (i) else (j)) ≥ 0 means that the maximum of i and j is positive.

The semantics of our logic is based on a valuation function val (K,σ|·),
where K is a structure and σ a concrete program state. The set of all con-
crete states σ assigning domain values to (program) variables is denoted by
Sconcr . The valuation function assigns to formulas a truth value “true” or “false”.
We write K,σ |= ϕ for val (K,σ|ϕ) = true (similarly for K,σ 6|= ϕ). To
terms, it assigns a value of the domain of the term, to updates a state trans-
former Sconcr → Sconcr and to programs a function Sconcr → 2Sconcr , where
the output, for deterministic programs, is the empty set if the program does
not terminate, or a singleton otherwise. A term domain we often use is that of
booleans, which consists of the values TRUE and FALSE; we employ a function
for2bool(ϕ) := if (ϕ) then (TRUE) else (FALSE) to convert formulas to booleans.
As an example for the valuation of an update, consider “x := y”: The result of
the valuation val (K,σ|x := y) (σ′)(z) is either σ(y), if z = x, or σ′(z) otherwise.

For formulating assertions about program behavior, DL contains modalities:
A formula [p]ϕ expresses the partial correctness property that if p terminates,
then the formula ϕ holds. Semantically, val (K,σ|[p]ϕ) evaluates to true if for
each σ′ ∈ val (K,σ|p) (σ), it holds that val (K,σ′|ϕ) = true. For full details on
JavaDL for Java and complete definitions, we refer to [1]. Here we focus on the
aspects of the logic that are specific to LLVM IR and SE: An LLVM IR program
q(n) is an instruction list with an instruction pointer n ∈ Z. If the pointer is
omitted, we assume the default “0” pointing to the first instruction in the list. If
n is negative or exceeds the number of instructions in q, the program has already
been exited and its valuation is the identity function; this corresponds to an
“empty” program for Java. We also write “_” in this case (for both languages).

The nodes of an SET are symbolic execution states (U , C, p) consisting of a
symbolic store U , a path condition C and a program counter p. In our framework,
U is an update, C a set of quantifier-free formulas; p can either be a Java program
π stmt ω or an LLVM IR program q(n) with instruction pointer as defined above.
In case of Java, the active statement stmt of a program is the next to be executed.
The prefix π contains opening braces, labels etc., and ω the remaining program.

We use the associative operator U1 ◦U2 := U1 || {U1}U2 for combining sequen-
tial updates. SE aims to transform a program p into a set of states with empty
program counters. The symbolic stores and path conditions of these states then
together describe the effect of p. Consider the (Java) SE state (y := z, ∅, x=y;),
which is in a single SE step transformed into (y := z◦x := y, ∅,_). By definition
of ◦, this equals (y := z || {y := z}(x := y), ∅,_), which can be simplified to
(y := z || x := z, ∅,_). With SSE we denote the set of all SE states, Upd is the
set of updates and Fmlqf the set of quantifier-free formulas. Semantically, an
SE state represents (possibly infinitely many) concrete states. Given a concrete
initial state, we can concretize a symbolic execution state to a concrete state.
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The union of all those concretizations for all concrete initial states provides us
with a complete description of the semantics of an SE state.

Definition 1 (Concretization Function). The concretization function concr :
SSE×Sconcr → 2Sconcr maps an SE state (U , C, p) ∈ SSE and a concrete state σ ∈
Sconcr (1) to ∅ if K,σ 6|= C, and else (2) to the set val (K, val (K,σ|U) (σ)|p) (σ)
(which, as Java is deterministic, is either a singleton if p terminates, or empty).

Example 1. The Java program in the SE state s = (Skip, ∅, if (x<0) x=-x;)
computes the absolute value of variable x. The leaves of the corresponding SET
are (Skip, {x ≥ 0},_) and (x := −x, {x < 0} ,_). Intuitively, s represents all
concrete states where x has a positive value. Given σ ∈ Sconcr with σ(x) = −17,
concr(s, σ) is the singleton set of a state mapping x to 17 and all other variables
to their values in σ. For each σ′ ∈

⋃
σ∈Sconcr

concr(s, σ) it holds that σ′(x) ≥ 0.

An SE transition relation δ ⊆ SSE × SSE , which defines how to obtain SETs
of SE states, in our framework is composed of a set of restricted SE rules. The
restriction is that each rule may only add to (and not remove or alter) the
symbolic stores (by update concatenation) and path conditions (by set union).
The resulting programs are not syntactically restricted.

A sound SE step has to transform programs into corresponding changes in
the symbolic store, as in the Java part of the rule assgnPVTransl in Fig. 1: The as-
signment x=y is transformed into an update x := y that leaves the concretizations
of the state unchanged. Case distinctions have to be exhaustive and disjoint. A
rule for an if statement creates two states. In the first, the guard is added to the
path condition, and the program counter contains the then part; in the second,
the path condition contains the negation of the guard, and the program counter
the else part. A concrete state satisfying the path condition of the initial SE state
will either satisfy the path condition of the first or the second successor, since it
satisfies the guard or its negation, but not both. The following formal definition
for the soundness of SE transition relations uses three projection functions, ·store,
·path and ·pc, to obtain the symbolic store, path condition and program counter
of an SE state. Subsequently, we assume SE transition relations to be sound.

Definition 2 (Soundness of Symbolic Execution). An SE transition rela-
tion δ ⊆ SSE×SSE is called sound iff (1) for each input-output pair (i, o) ∈ δ and
σ ∈ Sconcr with K,σ |= opath, it holds that concr(i, σ) = concr(o, σ), and (2) for
each i ∈ SSE for which there is an outgoing transition in δ, and σ ∈ Sconcr with
K,σ |= ipath, there is exactly one o ∈ SSE such that (i, o) ∈ δ and K,σ |= opath.

To handle placeholders in translation rules, we introduce abstract programs,
which contain symbols P̂ from a set AbsP of abstract program symbols. Each
P̂ represents an equivalence class of programs with the same effect. To formally
define SE of abstract programs we use abstract block contracts that generalize
the concept of abstract operation contracts [4, 7]. A block contract for a code
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1 %1 = load i32, i32* %x ; <label>:0
2 %2 = icmp slt i32 %1, 0
3 br i1 %2, label %3, label %6
4 %4 = load i32, i32* %x ; <label>:3
5 %5 = sub nsw i32 0, %4
6 store i32 %5, i32* %x
7 br label %6
8 ; ... ; <label>:6

Listing 1: Absolute of variable x

block bl is a pair (Uabl , Cbl), where Uabl is an update representing the assignable
clause of bl (Uabl assigns fresh constants to variables assigned in the block, and
similarly anonymizes the heap), and Cbl is a set of formulas representing bl’s
postcondition. An SE application of the block contract rule transforms an SE
state (U , C, bl; p) to (U ◦Uabl , C ∪{{Uabl}Cbl}, p), which is sound provided that bl
respects its contract. While in the block contract rule bl is a concrete program
and (Uabl , Cbl) a concrete contract, abstract contracts admit placeholders in post
conditions and assignable clauses. We lift SE to abstract execution, because now,
in addition, bl can be an abstract program symbol P̂ :

Definition 3 (Abstract Execution). Let C
P̂
, Ua

P̂
be fresh Skolem constants

representing unknown postconditions and assignable clauses. Abstract execution
transforms an SE state of the form (U , C, P̂ p) to (U ◦ Ua

P̂
, C ∪ {{Ua

P̂
}C

P̂
}, p).

Observation 1 Abstract execution of P̂ with the block contract rule is sound:
any substitution of a concrete code block blc for bl, a concrete post condition Ccbl
for Cbl, and a concrete update Ucbl for Uabl, where blc respects Ccbl and Ucbl, yields
a sound concrete SE transition.

Example 2. Consider the Java SE state (i := 0, ∅, P̂ i=17;) containing the ab-
stract program P̂ as active statement. Abstract execution of P̂ results in ((i :=
0) ◦ Ua

P̂
, C

P̂
, i=17;), which evaluates to ((i := 0) ◦ Ua

P̂
◦ (i := 17), C

P̂
,_). We

can further simplify this state to (Ua
P̂
◦ (i := 17), C

P̂
,_) since i is overwritten

in the last update. Based on the execution result, we can prove the assertion
that i is 17 after each execution of the abstract program (we ignore the pos-
sibility of thrown exceptions for this example). This corresponds to showing
the validity of the DL formula {i := 0}[P̂ i=17;]i .= 17, which simplifies to
C
P̂
→ {Ua

P̂
◦ (i := 17)}i .= 17 after SE, and further to C

P̂
→ {i := 17}i .= 17,

which is true. A possible concrete substitution for the abstract elements is
P̂ := (x=12;y=0;), C

P̂
:= {x .= 12} and Ua

P̂
:= (x := cx || y := cy) for fresh cx, cy.

4 Formalizing LLVM IR

LLVM IR [11] is a typed, low-level, SSA-based, RISC-like virtual instruction set.
Unlike most RISC instruction sets, LLVM does not have a fixed set of named
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registers and a stack, but an infinite set of temporaries %0, %1, etc. which have
to be assigned sequentially. Named registers %x, %y etc. can also be introduced.
In our model, named registers represent program variables in the Java sense.
LLVM IR code is structured into basic blocks, sequences of instructions ending
in one terminator instruction (like a branch or return). If a basic block does
not have an explicit label, it is assigned the next free temporary register as
label. Labelling instructions within a basic block is not possible, only the start
of a basic blocks can be a jump target. Listing 1 shows an LLVM IR program
computing the absolute of a 32-bit integer variable (i32) x, whose address is
contained in register %x. The first load instruction loads the value at address
%x into register %1. The icmp slt (“signed less than”) instruction compares the
result with 0, setting %2 to 1 (i.e., TRUE) iff x is negative. Line 3 performs a
case distinction via a labeled br instruction: If the bit (i1) in register %2 is 1
(the result of the comparison is that x is negative), the program continues with
the code inverting x at label %3. Otherwise, we directly skip to the end of the
program at label %6. In line 4, the program again loads the value of x, which is
at line 5 subtracted (sub) from 0 (the nsw stands for “no signed wrap”). The
store instruction at line 6 stores the result of that substraction (the inverted,
now positive variable x) at address %x; the unconditional br instruction at line 7
causes the start of a new basic block at line 8. Comments start with a semicolon.
The comments in the listing indicate the implicit label registers: their type is a
jump address.

We define a statement injection function 2n: The result of q 2n q
′ is a pro-

gram where at the n-th position of q, the program q′ has been inserted, such
that the first instruction of q′ is the n-th in the result. The function updates
temporary registers to maintain their sequential order. Figure 2 shows some SE
rules for LLVM IR. They are read bottom-up like sequent calculus rules. The
rules llvmStoreInt and llvmLoadBool illustrate the treatment of named vs. anony-
mous registers. For instance, a store instruction writing the value at register
%i into address %x is executed by setting the variable x to the value %i in the
symbolic store and incrementing the instruction pointer (the load of a boolean
works similarly). Rule llvmLtComp executes a less-than comparison of the con-
tents of two registers %k and %l. The boolean expression for2bool(%k < %l) eval-
uates to TRUE iff the formula %k < %l evaluates to true. In those three rules,
SE amounts to extending the update and increasing the instruction pointer by
one. Rule llvmCondBreakUnrestr is an example for a branching rule (we omit
the—straightforward—unconditional variant). Since the value of %i is in general
symbolic (and might be TRUE or FALSE), we perform a case distinction, fol-
lowing the possible branches independently. In the first case, we assume that %i
is TRUE and continue at the position n1 of the then-label %j, and analogously
in the second case. For programs with backjumps, i.e. ni < n, SE might not
terminate, because of this rule. In Sect. 6 we introduce a method for handling
loops which ensures termination.
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llvmStoreInt
(U ◦ (x := %i), C, (q 2n (store i32 %i, i32* %x))(n+1))

(U , C, (q 2n (store i32 %i, i32* %x))(n))

llvmLoadBool
(U ◦ (%i := x), C, (q 2n (%i = load i1, i1* %x))(n+1))

(U , C, (q 2n (%i = load i1, i1* %x))(n))

llvmLtComp
(U ◦ (%i := for2bool(%k < %l)), C, (q 2n (%i = icmp sle i32 %k, %l))(n+1))

(U , C, (q 2n (%i = icmp sle i32 %k, %l))(n))

llvmCondBrUnrestr
(U , C ∪ {%i .= TRUE}, (q 2n (br i1 %i, label %j, label %k))(n1))
(U , C ∪ {%i .= FALSE}, (q 2n (br i1 %i, label %j, label %k))(n2))

(U , C, (q 2n (br i1 %i, label %j, label %k))(n))

where n1 and n2 are the positions of the labels %j and %k, respectively.

Fig. 2: Some LLVM IR SE rules

5 Program Translation

We follow the approach of rule-based compilation [2,3] and additionally base our
system on heavyweight symbolic execution [17]. The advantages of rule-based
over monolithic systems consist of a higher degree of abstraction and better
modularity [3]. The latter not only increases reusability, but is also instrumental
in defining the modular correctness notion of our framework. The basics of our
compilation process were already sketched in earlier work [9]: First we symboli-
cally execute the source program, and then apply to the resulting SET, starting
from its leaves, a set of translation rules. The result is an SET consisting of dual
SE states, each of which contains equivalent programs in the source and target
language. The root of the tree contains the compiled program. Our rules are not
mere transformation rules, but rules for simultaneous symbolic execution, where
each element of the source language is associated with an SE rule. In the follow-
ing we establish basic notions for simultaneous SE and state the main result for
proving the correctness of translation rules. Then we exemplarily define some
rules for the translation from Java to LLVM IR and illustrate our approach along
the translation of an if statement.

Definition 4 (Dual SE States and Transition Relations). Given an up-
date U , a path condition C, a Java program p and an LLVM IR program q(n),
and a set of observable variables obs, we call the triple (U , C, p a` q(n))@(obs) a
dual symbolic execution state. The set of all dual SE states is denoted by Sd

SE .
A Dual SE Transition Relation (DSETR) is a relation δd ⊆ Sd

SE × Sd
SE .

We call a dual SE state valid if the source and target program have the same
observable semantics in the states defined by the symbolic store and path con-
dition, i.e. their concretizations coincide on the observable variables. Formally:
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ruleName
(U ◦ U1, C ∪ C1, p1 a` q(n1))@(obs1)

. . .
(U ◦ Um, C ∪ Cm, pm a` q(nm))@(obsm)

(U , C, p a` q(n))@(obs1 ∪ · · · ∪ obsm)

Fig. 3: Schematic translation rule

Definition 5 (Validity of Dual SE States). A dual SE state (U , C, p a`
q(n))@(obs) is valid iff the concretizations of sp = (U , C, p) and sq = (U , C, q(n))
coincide on all pv ∈ obs, i.e. p and q(n) either both do not terminate, or they
terminate and, where σ ∈ Sconcr such that K,σ |= C, and σp and σq are the con-
crete states in the singleton sets concr(sp, σ) and concr(sq, σ), σp(pv) = σq(pv) .

Definition 6 (Soundness of DSETRs). A DSETR δd is sound iff the va-
lidity of each dual SE state i is implied by the validity of all of its output states,
i.e. of all states in {o : (i, o) ∈ δd}.

This definition of soundness of DSETRs is suitable to ensure that SE rules
preserve validity (read “top-down”). Together, Defs. 5, 6 imply: if, starting from
a dual SE state s = (U , C, p a` q(n))@(obs) and by applying a sound DSETR,
we can derive a set of final states that all have the form (U ′, C ′,_ a` _)@(obs′)
for some U ′, C ′ and obs′, then s is valid, which means that the programs p and
q(n) have the same observable effects when started in a state satisfying U and C.

A DSETR can be defined in terms of rules for elements of the input program-
ming languages. Hence, soundness of the resulting DSETR can be established
by checking whether all rules meet the requirement of Def. 6. Figure 3 shows
a schematic representation of such a rule. It can be viewed in two ways. First,
as a rule for simultaneous symbolic execution, which is read “bottom-up”: We
transform the dual SE state in the conclusion to simpler states until the pro-
grams have been fully executed. Second, as a translation rule: Program p can
be translated to program q(n) (relative to U , C), where both programs may be
abstract. The requirements on the placeholders and the corresponding symbolic
stores Ui and path conditions Ci are defined in the premisses. Figure 3 also illus-
trates the restrictions we impose on dual SE rules, which correspond to those of
their non-dual counterparts: Symbolic stores and path conditions may only be
extended, but not altered otherwise (U and C are still present in all premises).

According to Def. 6, a translation rule is proved sound by showing p and q(n)

have the same observable semantics in the symbolic store U and path condition
C, under the assumption that this holds for all pi, q(ni) in U ◦ Ui, C ∪ Ci. A
trivial and useless way to prove soundness is by stipulating obsi := ∅, however,
in general we want to show program equivalence for non-trivial obs. A semantic
soundness argument is either informal or else is very hard to automate (based
on a formalization of the semantics of both input programming languages). We
suggest a practical alternative, based on the assumption that we have sound SE
systems for the source and target language at our disposal. The main idea is to
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assgnPVTransl
(U ◦ (x := y), C, π ω a` qn)@(obs)

(U , C, π x=y; ω a`
(
q 2n

(
%0 = load i32, i32* %y
store i32 %0, i32* %x

))(n)
)@(obs)

ltCompTransl
(U ◦ (b := x < y), C, π ω a` qn)@(obs)

(U , C, π b=x<y; ω a`

q 2n


%0 = load i32, i32* %x
%1 = load i32, i32* %y
%2 = icmp sle i32 %0, i32 %1
store i1 %2, i1* %b




(n)

)@(obs)

ifElseTransl
(U , C ∪ {b .= TRUE}, π P̂1 ω a` (q 2n P̂2)(n))@(obs1)
(U , C ∪ {b .= FALSE}, π P̂ ′1 ω a` (q 2n P̂ ′2)(n))@(obs2)

(U , C, π

if (b)
P̂1

else
P̂ ′1

ω a`

q 2n




%1 = load i1, i1* %b
br i1 %1, label %2,

label %3
br label %4; <label>:%2
br label %4; <label>:%3

; <label>:%4


23 P̂ ′2
22 P̂2





(n)

)@(obs1 ∪ obs2)

Fig. 4: Some example rules of the DSETR

reflect the validity requirement in Def. 5 into our program logic via justifying
formulas for dual SE states. Thus, the semantic soundness notion is reduced to
a DL formula which can be proven valid by automated deductive verification.

Definition 7 (Justifying Formula). Let s = (U , C, p a` q(n))@(obs) be a dual
SE state. For each variable x ∈ obs, let pSk

x (x) be a fresh unary Skolem predicate
symbol uniquely associated with x. We define the justifying formula F(s) of s as

F(s) := {U}
(∧

C
)
→
(
{U}[p](obs′)↔ {U}[q](n)(obs′)

)
,

where obs′ :=
∧

x∈obs(pSk
x (x)).

Proposition 1. A dual state s ∈ Sd
SE is valid iff its justifying formula is valid.

Figure 4 shows rules for variable assignment (the introductory example), less-
than comparison, and if statement. Consider rule ifElseTransl. If we know how
to translate P̂1 given that the guard b is true, and likewise for P̂ ′1, we can define
the translation for an arbitrary if statement.

For practical application of Def. 7 in soundness proofs of a translation rule
we have to decide how to handle the abstract parts of the rule that are only
instantiated with concrete elements when translating a concrete program. The
abstract parts are (1) the context information, i.e. the current symbolic store U
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and path condition C, as well as the program contexts π ω and q, (2) the sets
of observable variables, and (3) abstract program placeholders.

Regarding (1), since U and C are present in both the conclusion and in the
premisses of rules, because of the restrictions imposed on translation rules (cf.
Fig. 3), we can simply omit them in justifying formulas. Java program contexts
are treated as abstract program symbols. For LLVM IR, we introduce an addi-
tional simplification technique: Consider the modality [q2n q

′](n+n′), where n′ is
the number of instructions in q′. It can be simplified to [q](n), since (i) the pro-
gram q′ has already been processed, and (ii) our approach to loop compilation
ensures that back jumps exit the modality (see Sect. 6). After this simplification,
q in [q](n) can be handled as an abstract program symbol.

Regarding (2), we over-approximate observable variable sets by introduc-
ing fresh constant symbols pSk

obsi
(x̄) for each symbolic set obsi, which accept as

arguments the program variables x̄ occurring in any state involved in the rule
(observable variable sets are generally assumed not to contain anonymous LLVM
IR registers). A straightforward representation of a union obs1 ∪ obs2 is the dis-
junction pSk

obs1
(x̄) ∨ pSk

obs2
(x̄). We choose instead the more precise representation

of guarded conjunctions: Each obsi is associated to a dual SE state with branch
condition Ci. Since our semantic framework for SE stipulates that branch condi-
tions are exhaustive and mutually exclusive, there is always exactly one conjunct
of the guarded conjunction ((

∧
C1) → pSk

obs1
(x̄)) ∧ ((

∧
C2) → pSk

obs2
(x̄)) that is

valid in a concrete state. Finally, we assume that abstract block contracts are
oblivious to anonymous LLVM IR registers, i.e. contract path conditions C

P̂
for

abstract program symbols do not contain anonymous LLVM IR registers.

Remark 1. Programs p and q(n) might change program variables occurring in
path conditions Ci, which is why guarded conjunctions as defined above do
not work in general. This issue can be easily addressed by introducing fresh
program variables that record the pre-state of all variables in the Ci. To keep
the presentation readable, we avoid this technicality by assuming that program
variables in path conditions are unchanged.

The subsequent theorem stipulates a generalized notion of justifying formulas
instantiated for translation rules, taking into account the above considerations.
Essentially, it is a syntactic representation of Def. 6 based on Prop. 1: A trans-
lation rule is sound if the conjunction of the generalized justifying formulas of
the output states (the rule’s premises) implies the formula for the input state
(the conclusion). For brevity, we write C instead of

∧
C for path conditions.

Theorem 1. A translation rule with premises pr1 , . . . , prm and conclusion c is
sound if the formula

(∧
i=1,...,m F ′(pri)

)
→ F ′(c) is valid. We define F ′ as

F ′((U ◦ U ′, C ∪ C ′, π p ω a` (q 2n q
′)(n′))@(obs)) :=

{U ′}C ′ →
(
{U ′}[π p ω](obs′)↔ {U ′}[q 2n q

′](n
′)(obs′)

)
,
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where obs′ := pSk
obs(x̄) if obs is a single placeholder; and, if obs is a union of

symbols obsi arising from premisses pri with path conditions Ci, obs′ :=
∧
i(Ci →

pSk
obsi

(x̄)). The predicates pSk
obs(x̄) are fresh, uniquely associated with each obs, and

x̄ are all program variables occurring in Ui, Ci of any pri.

Example 3 (Soundness of ifElseTransl). To prove rule ifElseTransl sound, by Thm. 1
it suffices to prove the following formula valid (we abbreviate the program in the
LLVM IR part of the conclusion with dots):

(b .= TRUE→ ([π P̂1 ω](pSk
obs1

(b))↔ [q 2n P̂2](n)(pSk
obs1

(b)))) ∧ (1)

(b .= FALSE→ ([π P̂ ′1 ω](pSk
obs2

(b))↔ [q 2n P̂ ′2](n)(pSk
obs2

(b)))) (2)

→
(
([π if (b) P̂1 else P̂ ′1 ω]) (3)

((b .= TRUE→ pSk
obs1

(b)) ∧ (b .= FALSE→ pSk
obs2

(b))))↔

([q 2n (((· · · ) 23 P̂ ′2) 22 P̂2)](n) (4)
((b .= TRUE→ pSk

obs1
(b)) ∧ (b .= FALSE→ pSk

obs2
(b))))

)
We first define some abbreviations. Let, for k = 1, 2,

prek1 := C
P̂1
∧ {Ua

P̂1
}Cπω → {Ua

P̂1
◦ Uaπω}(pSk

obsk
(b))

prek2 := C
P̂2
∧ {Ua

P̂2
}Caq → {Ua

P̂2
◦ Uaq }(pSk

obsk
(b))

and preki similarly for P̂ ′i instead of P̂i. Treating πω and q as abstract programs
and simplifying [q2n P̂2](n+1) to [q](n) as explained above, SE of the modalities
in premise (1) by Def. 3 results in pre1

i , and for (2) in pre2
i , i = 1, 2. We obtain

b .= TRUE→ (pre1
1 ↔ pre1

2) (1se)
b .= FALSE→ (pre2

1 ↔ pre2
2) (2se)

The if statement in formula (3) causes SE to split. The “then” branch, in
which P̂1 is executed, evaluates to

b .= TRUE→
(
C
P̂1
∧ {Ua

P̂1
}Cπω →

(
{Ua

P̂1
◦ Uaπω}((b

.= TRUE→ pSk
obs1

(b)) ∧ (b .= FALSE→ pSk
obs2

(b)))
))

Due to the premise b .= TRUE, the right conjunct of the guarded conjunction
simplifies to true and can be removed, and similarly for the “else” branch of the
if statement. Therefore, formula (3) simplifies to

b .= TRUE→ pre1
1 ∧ b .= FALSE→ pre2

1 (3se)

SE of (4) similarly splits and produces two conjuncts. Again, we focus on the
“then” branch where the dots abbreviate the guarded conjunctions of pSk

obsi
(b):(

{%1 := b}(%1 .= TRUE)→
(
{%1 := b}C

P̂2
∧

{(%1 := b) ◦ Ua
P̂2
}Caq → {(%1 := b) ◦ Ua

P̂2
◦ Uaq }(· · · )

))
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llvmLoopScopeEnter
(U ◦ Uhavoc, C, (q 2n �x)(n+1))

(U , C, (q 2n �x)(n))

llvmLoopScopeExit
(U ◦ (x .= TRUE), C, (q 2n x	)(n+1))

(U , C, (q 2n x	)(n))

llvmLoopScopeCont
(U ◦ (x := FALSE), C,_)

(U , C,

q 2n




�x
br label %i

; label %i
br label %j

x	

 23 q2
22 q1




(n′)

)

(∗)

where (∗) n′ points to the position of the second br statement, and %i is the label for
the basic block indicated by the comment (starting after the first br).

Fig. 5: LLVM IR loop scope rules

The crucial difference to the Java part consists in the update %1 := b resulting
from loading the value of b into the anonymous register %1. We have to perform
a further simplification step. Generally, we can drop an update U1 in a formula
{U1◦U2}ϕ if ϕ does not contain any left-hand side of U1, and U2 does not contain
as right-hand side any left-hand side of U1 [1, Chapter 3]. This simplification is
applicable here, because we assumed abstract block contracts to be ignorant
about anonymous LLVM IR registers: Formula {(%1 := b) ◦Ua

P̂2
}Caq is simplified

to {Ua
P̂2
}Caq , because %1 does not appear in C

P̂2
and not as a right-hand side in

Ua
P̂2
, which only assigns fresh constants (similarly for {%1 := b}C

P̂2
). Formula

{(%1 := b) ◦ Ua
P̂2
◦ Uaq }(. . . ) is simplified to {Ua

P̂2
◦ Uaq }(. . . ), because UaP̂2

, Uaq
do not have %1 as right-hand side. Finally, {%1 := b} (%1 .= TRUE) simplifies to
b := TRUE. After simplification of the guarded predicates as before, we obtain

b .= TRUE→ pre1
2 ∧ b .= FALSE→ pre2

2 (4se)

In summary, we have reduced soundness of ifElseTransl to the following propo-
sitional formula, which is a tautology:((

b .= TRUE→ (pre1
1 ↔ pre1

2)
)
∧ (1se)(

b .= FALSE→ (pre2
1 ↔ pre2

2)
))

→ (2se)((
b .= TRUE→ pre1

1 ∧ b .= FALSE→ pre2
1
)
↔ (3se)(

b .= TRUE→ pre1
2 ∧ b .= FALSE→ pre2

2
))

(4se)
ut

The soundness proof just sketched is well in the realm of what is automati-
cally provable with a deductive verification system such as KeY [1].

6 Handling of Loops

Symbolic execution of LLVM IR branch instructions and compilation of loops
in a manner that ensures termination poses a challenge: Since LLVM IR pro-
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grams may contain back- and forward jumps, SE of branching rules such as
llvmCondBrUnrestr (Fig. 2) might diverge. The standard approach to ensure ter-
mination in structured programming languages uses loop invariant rules. Our
solution for the unstructured case is based on the more general concept of loop
scopes, introduced in [17] for Java. A (Java) loop scope statement �x p x	 de-
fines a scope for its body p; it has a boolean index variable x which is passed to
the delimiters �x and x	 as a parameter. One can read �x p x	 as “execute loop
body p in its own scope with continuation information x”. Loops are transformed
into loop scope statements. Whenever a loop normally would execute a further
iteration, SE of the loop scope terminates, and x is set to FALSE. When the
loop would be exited, symbolic execution continues after the loop scope, and x
is set to TRUE.

We implement this idea for LLVM IR: First, existing rules for jumps, such
as llvmCondBreakUnrestr, are restricted to forward jumps. Second, we add new
rules (Fig. 5) for loop scopes, including one for backward jumps. As there are
no explicit loops in LLVM IR, we insert scope delimiters �x, x	 at suitable
positions. We assume LLVM IR programs correspond to well-formed Java loops.

Rule llvmLoopScopeEnter begins symbolic execution of a loop scope by set-
ting all variables assigned in the scope to fresh constants via an update Uhavoc,
because we cannot know their value during an arbitrary iteration. (In Java, this
task is performed by the loop invariant rule.) Rule llvmLoopScopeExit signals
that the loop scope has been exited by setting the index variable to TRUE. The
only rule applicable to backward jumps is llvmLoopScopeCont. Using the loop
scope concept constitutes a restriction of the LLVM IR fragment on which SE
is complete; however, that fragment is sufficient for our compilation target.

Rule whileTransl in Fig. 6 is a translation rule for while loops based on loop
scopes. In the LLVM IR code, “only” the instruction pointer is incremented,
corresponding to an execution of the opening loop scope statement. Its structure
corresponds closely to the Java part in the premise. It includes a br instruction
(labelled %5) which is dead due to the translation of the break before. It is
included to match the output of the rule ifElseTransl (Fig. 4—the removal of
dead basic blocks is the task of subsequent simplification steps).

To execute a dual SE state with a loop, we apply whileTransl and ifElseTransl,
execute both if branches, and finally apply continueLoopScopeTransl as well as
breakLoopScopeTransl. We keep the LLVM IR loop scopes in the conclusion of
whileTransl for handling the backward jump in the last br instruction. In a post-
processing step, loop scopes can safely be dropped: If a program is correct in the
restricting presence of loop scopes, it is also sound without. An example for the
translation of a factorial method, which contains a loop, is given in the appendix.

7 Related Work

Our work takes up the concept of “dual” SE states and SE-based compilation
introduced in [8] (see also [9]), where compilation from Java to Bytecode was
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whileTransl

(U ◦ Uhavoc, C, π



�xif (b) {
P̂1
continue;
} else {
break;

} x	

 ω a` . . .(n+2))@(obs)

(U , C, π
while (b)
P̂1

ω a`


q 2n





�x
br label %1

; <label>:%1
%2 = load i1, i1* %b
br i1 %2, label %3,

label %4
br label %6 ; <label>:%3
br label %7 ; <label>:%4
br label %6 ; <label>:%5
br label %1 ; <label>:%6

x	 ; <label>:%7


24 P̂1





(n)

)@(obs)

where Uhavoc is as above. The dots in the premise indicate that LLVM IR instructions
there are the same as in the conclusion.

breakLoopScopeTransl
(U ◦ (x := TRUE), C, π ω a` q(n))@(obs)

(U , C, π �xbreak; x	 ω a`

q 2n


�x
br label %1
br label %3 ; <label>:%1
br label %1 ; <label>:%2

x	 ; <label>:%3




(n+2)

)@(obs)

continueLoopScopeTransl
(U ◦ (x := FALSE), C,_ a` _)@(obs)

(U , C, π �xcontinue; x	 ω a`

q 2n


�x
br label %1
br label %1 ; <label>:%1

x	




(n+2)

)@(obs)

Fig. 6: Translation rules for loops
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studied as an application of a program transformation framework. The system
proposed there is not based on a formalization of the target language, therefore,
the employed correctness notions remain underspecified. We define correctness
differently, based on a new semantics for symbolic execution (not depending on
a validity calculus) and focus on how to show the correctness of translation rules
automatically. For the execution of abstract programs, we generalize abstract
operation contracts [4, 7] to abstract block contracts. In contrast to the former,
where contracts are abstract, but programs are concrete, our blocks may consist
of abstract program symbols. This gives rise to the concept of abstract execution
that permits to reduce a limited second-order inference (no induction, no higher-
order quantification) about programs to first-order dynamic logic. The resulting
formulas can be proven automatically by a program verifier.

The two most relevant research areas to compare with are: (1) program log-
ics, formal models, and symbolic execution for low-level languages, in particular
LLVM IR, and (2) rule-based or certified correct compilation and program trans-
formation. Vellvm [19], implemented in Coq, provides an operational semantics
of LLVM IR based on a formalized memory model. The authors name as long-
term goal to provide a semantic basis for a fully verified LLVM IR compiler. Our
scope is verification of correctness and behavioral equivalence, i.e. of functional
and relational properties, which is reflected in our more high-level formalization.
In future work, it would be interesting to investigate whether it can be proved
with Vellvm that our SE rules faithfully model their LLVM IR semantics. The
only (implemented) SE system for LLVM IR we know of is KLEE [6], an au-
tomatic tool, mainly aiming at creating high-coverage test suites and unveiling
generic errors, such as memory faults. Various program logics for low-level, un-
structured programs have been suggested in the literature, for example, in [15].
This results in theoretically complete proof systems, however, it is difficult to
come up with suitable intermediate assertions during verification. Since we target
compilation and not functional verification, it suffices to use schematic interme-
diate assertions that are built into our rules. We envision an implementation of
our SE framework for LLVM IR in a logic-based system like KeY [1], facilitating
semi-interactive proofs of complex functional properties of LLVM IR code.

Regarding area (2), Rotan [3] is a rule-based compiler for parallel programs.
It features a specialized rule language and puts focus on modularity. We cur-
rently only consider sequential programs, but achieve fully automated correct-
ness proofs of our rules. Of great interest is the work on verified compilers. A
prominent example is the CompCert project [13], a verified compiler from C
to PowerPC assemblies (mostly) written in Coq. CompCert covers all compila-
tion phases including optimization. Its correctness notion, “forward simulation
for safe programs”, is more flexible than, e.g., bisimulation. Our approach only
takes the outcome of source and target programs (its big-step semantics) into
account, and not how it is computed (its small-step semantics). Therefore, our
justifying formulas permit more far-reaching optimizations, abstracting away
from concrete control flow. To some degree, CompCert follows different goals
than our approach. Its extensive formalizations permit meta proofs about pro-
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grams (e.g., taking into account a realistic memory model), while we only for-
malize operational semantics and relate source and target. A strength of our
approach is its modularity, entailed by its rule-based nature; furthermore, Coq
proofs are interactive, whereas our goal is to automate the proofs of the trans-
lation rules. A related and noteworthy system which shares our source language
Java is Jinja [10], a formalization in Isabelle/HOL of semantics, virtual machine
and compiler of a Java-like language including a mechanized proof that the com-
piler preserves the semantics. This system is also based on an interactive proof
assistant and requires manual proof effort. CakeML [18] is a more recent veri-
fied compiler for a functional programming language developed in Isabelle/HOL
which invests a lot of effort in modularity; still, the backend does not provide
automated support for correctness proofs of individual source elements.

For parts of the compilation process, automated solutions exist: One example
is Alive [14], a verification/code generation framework for peephole optimizations
in LLVM. Within Alive, it is possible to formalize local algebraic simplifications
and code optimizations in a restricted DSL, which are then transformed to first-
order logic assertions that are passed to an SMT solver. While being automatic,
the addressed problem is relatively simple compared to full-fledged compilation.

8 Conclusion and Future Work

We presented a theoretical framework for correct-by-construction, modular rule-
based compilation from Java to LLVM IR. The framework is based on a new
semantics of Symbolic Execution (SE) and a formalization of the source and
target languages in terms of SE rules, which constitutes the trust anchor. For the
Java part, we build on Java DL, the mature logical basis of the KeY system [1].
Our new (partial) SE system for LLVM IR is designed to integrate smoothly with
it. Translation rules are proven correct automatically by reducing correctness
assertions about abstract programs to first-order dynamic logic formulas, which
can be fed to an automatic program verifier.

There are several interesting directions for future work which we plan to
pursue: We aim to extend an existing formalization of our SE semantics in
Coq to our compilation framework, instantiated to a structured, imperative and
a simple unstructured language. Our current main focus is the integration of
the SE system for at least a subset of LLVM IR into the Java verifier KeY.
Based on this, we will construct a compiler for sequential Java realizing the
theoretical framework outlined in this paper. Since an SE engine that simplifies
away all complex Java constructs and that produces SSA is available in KeY
already [1, Chapter 3], this is likely to succeed quickly. KeY’s program logic
can also deal with complex Java constructs such as method calls, for example,
using method frames and non-schematic program transformation rules. Again,
these techniques are transferable to LLVM IR compilation. We intend to add
a rule-based modular optimization phase, allowing for high-level optimizations
exploiting the global knowledge gained by Symbolic Execution. Our correctness
notion, which is more general than (bi-)simulation used elsewhere, because it
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takes the context into account and permits abstract programs, should be ade-
quate for this purpose. Finally, it would be natural to attach our framework
as a backend to a refinement-based correct-by-construction tool. This opens
the possibility of an “end-to-end” correctness-by-construction approach—from
declarative specifications to executable machine code.
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Appendix

This appendix provides additional material for the reader, including a sketch
of the integration of state merging techniques into our approach, an extended
compilation example, and a proof of Thm. 1.

A State Merging

Our SE transition relation defined in Sect. 3 outputs tree structures: all states,
but the root, have exactly one predecessor. State Merging [16] has originally
been invented to mitigate the state explosion problem of SE. It permits to merge
symbolic states with identical program counter as arising, for example, after the
execution of the then and else branch of an if statement, thus reducing the
state space. Def. 2 can be extended to transition relations with state merging by
applying the same conditions reversely for “merging” transitions:

mergeTransl
(Umerge,

∧
C1 ∨

∧
C2, p a` q(n))@(obs1 ∪ obs2)

(U1, C1, p a` q(n))@(obs1)
(U2, C2, p a` q(n))@(obs2)

where Umerge is a merging update.

Fig. 7: State merging translation rule

Definition 8 (Soundness of SE with State Merging). Let δm be an SE
transition relation with state merging (some states have more than one predeces-
sor). We call δm sound iff the transition relation

δ′ :={(i, o) ∈ δm : ¬∃i′ 6= i, (i′, o) ∈ δm}∪
{(o, i) : (i, o) ∈ δm ∧ ∃i′ 6= i, (i′, o) ∈ δm}

is sound in the sense of Def. 2.

Translation rule mergeTransl (Fig. 7) merges two branches with identical
program counters. Without it, compiling programs with branching statements
leads to duplicated code, for example, in rule ifElseTransl. The double horizontal
line below the rule’s premise indicates its special status: it is the only rule with
more than one conclusion. For constructing the merged symbolic store, there is
more than one option [16]. In the simplest case, we create a fully precise value
summary by means of an if-then-else term.

B Factorial Example

The program in Fig. 8 (p. 22) computes the factorial of variable x, contained in
variable res after termination. Figure 12 shows the SET of the dual SE states
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corresponding to the translation of the Java to LLVM IR code. Constructing the
tree works by first symbolically executing the Java program. The Java SET has
the same structure, without the LLVM IR parts and observable variables sets.

In the second phase, we apply translation rules from the leaves to the root,
obtaining the dual SE states. The root of the tree contains the compiled LLVM
IR program qresult depicted in Fig. 9 (with dropped loop scopes). The tree is
slightly simplified: we sometimes abbreviate programs with “. . . ” and combine
several translation rules into one, for example, in the translation of Java’s i++,
which in the course of SE would be simplified to SSA form first. Two subtrees
have been factored out for better readability (Figures 10 and 11).

The example also shows an artifact occurring due to our rule-based compi-
lation: The basic block with label %13 is never reached since it is not targeted
by jumps, and the block before jumps outside the loop (this is the translation of
the break instruction). The instruction has been added because of the general
definition of the if translation rule; if the else block did not jump out of the
loop, it would also make sense. Removal of such dead code, as well as other
optimizations, are subject to subsequent post-processing steps and not within
the scope of this paper.

C Proofs

Proof (Thm. 1). We must prove that a translation rule is sound (Def. 6) if
F =

(∧
i=1,...,m F ′(pri)

)
→ F ′(c) is valid. By Prop. 1, a dual SE state is valid iff

its justifying formula is valid, and the shape of F directly encodes Def. 6. Hence,
it suffices to show that the validity of justifying formulas F ′(s′) for abstract
states s′ implies the validity of F(s) for all concrete instantiations s of s′. Let
s′ = (Ua ◦ U , Ca ∪ C, pabs

j a` pabs
IR )@(obsa) be an abstract SE state where Ua,

Ca and obsa are symbolic and pabs
j , pabs

IR contain abstract placeholder symbols.
An instantiation s has the shape (U ′ ◦U , C ′∪C, pj a` pIR)@(obs), where pj and
pIR result from pabs

j and pabs
IR by replacing placeholders with concrete programs.

We have to show the following implication:

|= ({U}C → ({U}[pabs
j ]obs′F ′ ↔ {U}[pabs

IR ]obs′F ′)) =⇒
|= ({U ′ ◦ U}(C ′ ∪ C)→ ({U ′ ◦ U}[pj ]obs′F ↔ {U ′ ◦ U}[pIR]obs′F ))

Since the validity of {U ′ ◦ U}(C ′ ∪ C) implies the validity of {U}C, it suffices to
show the following, stronger property:

|= (({U}[pabs
j ]obs′F ′ ↔ {U}[pabs

IR ]obs′F ′)) =⇒
|= (({U ′ ◦ U}[pj ]obs′F ↔ {U ′ ◦ U}[pIR]obs′F ))

(*)

Since abstract execution is sound (Obs. 1), the premise of (*) holds for all
concrete contracts substituted for the abstract ones induced by the placeholders
in the programs; this means that in particular, we can substitute pj/pIR for
pabs
j /pabs

IR . Let UJava, UIR be the updates resulting from SE of the concrete pro-
grams (if SE splits, we can obtain summaries by state merging, see Appendix A).
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Now there are two possibilities: Either, obs′F ′ is an atom, or it is a guarded
conjunction (and s constitutes the conclusion of a dual SE rule application).
We focus on the more complicated second case. Let obs be the (concrete) set
of observable variables of s, Ci the path conditions of the premisses of the rule
that has s in its conclusion, and x̄ the variables occurring in any symbolic store
or path condition of those premises. Then, after instantiation, (*) expands to:

|=
(
{U ◦ UJava}(

∧
i

(Ci → pSk
obsi

(x̄)))↔ {U ◦ UIR}(
∧
i

(Ci → pSk
obsi

(x̄)))
)

=⇒

|=
(
{U ′ ◦ U ◦ UJava}(

∧
x∈obs

pSk
x (x))↔ {U ′ ◦ U ◦ UIR}(

∧
x∈obs

pSk
x (x))

)
Generally, x̄ can contain variables not occurring in obs, due to over-approxi-

mation. On the other hand, if obs contains variables not in x̄, those are not
in the scope of the currently investigated rule, and are therefore taken out of
consideration here.2 Additionally, we perform a strengthening by dropping the
updates U ′ in the conclusion (this can be regarded as an abstraction step, since
we discharge information). W.l.o.g., consider two different variables x, y and
obs = {x}; their right-hand sides in the updates U ◦ UJava and U ◦ UIR are
txJava, t

y
IR, etc. Under the assumption that x and y do not occur in the Ci (see

Remark 1), the problem simplifies to:

|=
(∧
i

(Ci → pSk
obsi

(txJava, t
y
Java))↔

∧
i

(Ci → pSk
obsi

(txIR, t
y
IR))

)
=⇒ (†)

|=
(
pSk

x (txJava)↔ pSk
x (txIR)

)
(4)

For simplicity, we assume that the terms do not contain program variables. The
equivalence in (4) is valid iff for all interpretations I, it holds that

I(txJava) ∈ I(pSk
x ) ⇐⇒ I(txIR) ∈ I(pSk

x ) (4sem)

Let I0 be an arbitrary interpretation; we show that (4sem) holds for I0. All Ci
are mutually exclusive due to the restriction built into our semantics (Def. 2), i.e.
Ci ↔

∧
k 6=i ¬Ck for all i = 1, . . . , n. Since (†) is valid, for any interpretation I

there is exactly one i such that

(I(txJava), I(tyJava)) ∈ I(pSk
obsi

) ⇐⇒ (I(txIR), I(tyIR)) ∈ I(pSk
obsi

) (†sem)

We choose an interpretation I1 that (i) interprets txJava, txIR in the same way as I0,
(ii) satisfies I1(pSk

obsi
) = {(d1, d2) : d1 ∈ I0(pSk

x )} and, at the same time, (iii) sat-
isfies (†sem) for some i. By definition of I1 we have that (I1(txJava), I1(tyJava)) ∈
I1(pSk

obsi
) implies I0(txJava) ∈ I0(pSk

x ), and, similarly, for txIR, t
y
IR. Hence, (4sem)

holds in I0. ut

2 When using Thm. 1 to automatically prove the soundness of translation rules with
a deductive verification system such as KeY, this aspect can and must be precisely
modeled. This can be done by tracking for each abstract program an (abstract) set
of variables it depends on.
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int i=1;

while (
i < x

) {
res = res*i;

i++;

}

Fig. 8: Factorial program in Java

%i = alloca i32
store i32 1, i32* %i
br label %1
%b = alloca i1 ; <label>:%1
%2 = load i32, i32* %i
%3 = load i32, i32* %x
%4 = icmp sle i32 %2, %3
store i1 %4, i1* %b
%5 = load i1, i1* %b
br i1 %5, label %6, label %12

; <label>:%6
%7 = load i32, i32* %res
%8 = load i32, i32* %i
%9 = mul i32 %7, %8
store i32 %9, i32* %res
%10 = load i32, i32* %i
%11 = add i32 %11, 1
store i32 %11, i32* %i
br label %14
br label %15 ; <label>:%12
br label %14 ; <label>:%13
br label %1 ; <label>:%14

; <label>:%15

Fig. 9: Factorial program in LLVM IR

(b ∶= for2bool(i0 < x) ∣∣res ∶= res0 ∗ i0 ∣∣i ∶= 1 + i0 ∣∣lsi ∶= FALSE,{b ≐ TRUE}, ⊣⊢ )@({res,x})
continueLoopScTransl

(b ∶= for2bool(i0 < x) ∣∣res ∶= res0 ∗ i0 ∣∣i ∶= 1 + i0,{b ≐ TRUE},↻lsicontinue; lsi↺⊣⊢
⎛⎜⎜⎜⎝
↻lsi

br label %1

br label %1

lsi↺
⎞⎟⎟⎟⎠

(2)
)@({res,x})

postIncrTrans

(i ∶= i0 ∣∣b ∶= for2bool(i0 < x) ∣∣res ∶= res0 ∗ i0,{b ≐ TRUE},
↻lsi

i++;

continue;

lsi↺
⊣⊢ ⎛⎜⎝. . . ⪦2

⎛⎜⎝
%0 = load i32, i32* %i

%1 = add i32 %0, 1

store i32 %1, i32* %i

⎞⎟⎠
⎞⎟⎠
(2)
)@({res,x})

assgnMultIntTransl

(i ∶= i0 ∣∣res ∶= res0 ∣∣b ∶= for2bool(i0 < x),{b ≐ TRUE}, . . .
res=res*i;

. . .
⊣⊢ ⎛⎜⎜⎜⎝. . . ⪦2

⎛⎜⎜⎜⎝
%0 = load i32, i32* %res

%1 = load i32, i32* %i

%2 = mul i32 %0, %1

store i32 %2, i32* %res

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(2)
)@({res,x})

Fig. 10: Subtree “then” for the example tree in Figure 12

(i ∶= i0 ∣∣res ∶= res0 ∣∣b ∶= for2bool(i0 < x) ∣∣lsi ∶= TRUE,{b ≐ FALSE}, ⊣⊢ )@({res,x})
breakLoopScopeTransl

(i ∶= i0 ∣∣res ∶= res0 ∣∣b ∶= for2bool(i0 < x),{b ≐ FALSE},↻lsibreak; lsi↺⊣⊢
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

↻lsi

br label %1

br label %3

br label %1

; <label>:%3

lsi↺

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

)@({res,x})

Fig. 11: Subtree “else” for the example tree in Figure 12
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Fig. 12: An example compilation tree (slightly simplified)
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