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Abstract

Part 1: Integrating ADTs in KeY

We discuss integrating abstract data types (ADTs) in
the KeY theorem prover by a novel approach to model
data types using Isabelle/HOL as an interactive back-
end, and translate Isabelle theorems to user-defined
taclets in KeY.

Part 2: Application to History-based Reasoning

As a case study of this approach, we reason about
Java’s Collection interface using histories, and we
prove the correctness of several clients that operate
on multiple objects, thereby significantly improving the
state-of-the-art of history-based reasoning
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Motivation

Abstract Data Types (ADTs):

I Reasoning about conceptual data,
on a higher-level of abstraction

I Useful for relating Java implementation to abstract type

History-based reasoning for Java interfaces:
I Java interface: no concrete implementation available,

so keep track of all method calls and returns in a history.

I Model histories using ADTs

I Verification of the functional properties of clients
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Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined:

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined:

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: ?

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)

isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None

¬isSome(None)



Abstract Data Types

I Modelling abstract data types in KeY

Built-in: \bigint, \seq, \locset

User-defined: e.g. an option of pairs of int and Object

I Defining user-defined functions and predicates

e.g. incr1: option (int, Object)→ option (int, Object)
isSome? option (int, Object)

I Reasoning about data types and their properties

e.g. incr1(None) = None
¬isSome(None)



Problem & Solutions

Problem:

KeY has no direct support for ADTs

Solution directions:
1. Model ADTs using Java classes (previous work)

Pros:
I Specification at level of programming language
I Computable functions, also available within Java
I Only need to use and know Java & JML

Cons:
I Lifting to specification language (pure functions)
I Elements live on the heap, referential equality
I Large verification overhead:

termination, determinism modulo heap dependency
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Our Approach

We use the Isabelle/HOL theorem prover to define data types.

We translate data types into:
I sorts (one per data type)
I function symbols (constructors, functions)

We use the new function symbols in JML specifications:
using the escape hatch \dl_

We use KeY to generate (and prove) proof obligations.

When we are stuck on proof involving our logical symbols:
we prove a relevant and useful theorem in Isabelle.

We import the theorems of Isabelle as taclets in KeY.
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Isabelle/HOL:

datatype α option = None | Some(α)

Import instantiated signature (.key file):
\sorts { option; }
\functions { option Some(java.lang.Object);

option None; ... }

Use \dl_Some and \dl_None in specification language (JML):
//@ requires \dl_Some(x) = o;
...
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Example

(KeY) We are stuck at a proof obligation:
..., Some(x) = o, o = Some(y)
==>
x = y

(Isabelle) Prove the theorem:

lemma Some_injective :: Some(a) = Some(b) =⇒ a = b

Import Isabelle theorem as KeY taclet:
\axioms {

Some_injective {
\schemaVar \term java.lang.Object o1, o2;
\find(Some(o1) = Some(o2))
\replacewith(o1 = o2)

};
}
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Histories

To specify an interface, we use the history-based approach:

1. Record all method invocations on an interface in a history
2. Define abstract properties of histories
3. Specify object behavior in terms of its abstract properties

General approach applicable to all interfaces,
we focus here on Collection interface.

No built-in support for histories in KeY or JML!

Our previous work:
H. A. Hiep, J. Bian, F. S. de Boer, and S. de Gouw. History-based specification and
verification of Java Collections in KeY. In International Conference on Integrated
Formal Methods, pages 199–217. Springer, 2020

But now we can use ADTs!
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Example program

Object add_remove(Collection x, Object y) {
if (x.add(y)) {
x.remove(y);

}
return y;

}

Q: What does this method do?



Abstract properties of Collection

The contents of a collection is modelled as a multiset.

Let h be a history of Collection events.
A multiset is defined inductively:
I multiset(ε) = /0
I multiset(add(y ) 7→true :: h) = multiset(h)∪{y}
I multiset(add(y ) 7→false :: h) = multiset(h)
I multiset(remove(y )7→true :: h) = multiset(h)−{y}
I multiset(remove(y )7→false :: h) = multiset(h)
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Example contract

/*@ ...
@ ensures (\forall Object o1;

\dl_multiset(x.history(),o1) ==
\dl_multiset(\old(x.history()),o1)); @*/

Object add_remove(Collection x, Object y)
...

I \dl_multiset: escape hatch to function symbol

I x.history(): associated history to interface instance

Moral: the contents of the collection remains the same.
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Moral: the contents of the collection remains the same.



What improvement?

Previous approach:
I Use Java objects to encode histories
I Use Java methods to define functions
I Verify pure functions (totality, determinacy, dependency)
I Total verification effort: est. 75 minutes

New approach (using ADTs!):
I Define ADTs and functions in Isabelle/HOL
I Lazy approach to proving/importing theorems
I Total verification effort: automatic

What can we do with the gain?

Verify more advanced clients!
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Example program

boolean iterate_only(Collection x) {
Iterator it = x.iterator();
/*@ ...
@ decreasing \dl_size(it.owner().history()) -

\dl_iteratorSize(it.owner().history(),it); @*/

while (it.hasNext()) {
it.next();

}
return true;

}

I it.owner(): all events recorded in owning collection

I \dl_size: sum of all multiplicities

I \dl_iteratorSize: sum of all multiplicities of iterator
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What improvement?

Previous approach:
I Verify pure functions (totality, determinacy, dependency):

I size
I iteratorSize
I isIteratorValid
I iteratorLast
I iteratorHasNext
I iteratorVisited

I Total verification effort: unknown. More than 8 hours?

New approach (using ADTs!):
I Define functions in Isabelle/HOL
I Total verification effort: automatic
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Isabelle functions

Function iteratorSize:

fun iterSize: History→ Iterator→ int where
iterSize (ε) z = 0
iterSize (iterator()7→y :: h) z = (y = z ? 0 : iterSize h z)
iterSize (y.next()7→x :: h) z = iterSize h z + (y = z ?1:0)
iterSize (y.remove() :: h) z = (y = z ? iterSize h z - 1 : 0)
iterSize (e :: h) z = (modify e ? 0 : iterSize h z)

and iteratorHasNext:

fun iterHasNext: History→ Iterator→ bool where
iterHasNext h z = (iterSize h z < size h)



Isabelle functions

Function iteratorSize:

fun iterSize: History→ Iterator→ int where
iterSize (ε) z = 0
iterSize (iterator()7→y :: h) z = (y = z ? 0 : iterSize h z)
iterSize (y.next()7→x :: h) z = iterSize h z + (y = z ?1:0)
iterSize (y.remove() :: h) z = (y = z ? iterSize h z - 1 : 0)
iterSize (e :: h) z = (modify e ? 0 : iterSize h z)

and iteratorHasNext:

fun iterHasNext: History→ Iterator→ bool where
iterHasNext h z = (iterSize h z < size h)



Imported theorem

Isabelle lemma:

lemma HasNext_size:
isValid h =⇒
isIteratorValid h z =⇒
¬iteratorHasNext h z =⇒
size h = iteratorSize h z

Imported taclet:
HasNext_size {
\schemaVar \term history h;
\schemaVar \term Iterator it;
\assumes(isValid(h) = TRUE ==>)
\assumes(isIteratorValid(h,it) = TRUE ==>)
\find(iteratorHasNext(h,it) = FALSE)
\replacewith(size(h) = iteratorSize(h,it))
};
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Example program

boolean compare(Collection x, Collection y) {
Iterator it = x.iterator();
/*@ ...

...

...

...

...

... @*/

while (it.hasNext()) {
if (!y.remove(it.next())) { return false; }
else { it.remove(); }

}
return y.isEmpty();

}
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Summary

1. Integrating ADTs in KeY:
I Isabelle/HOL as interactive back-end
I A lazy approach that guarantees consistency

2. Reasoning about interface clients using histories:
I Case study: Collection
I Advanced clients: are two collections equal?

Paper submitted to FM2021

Open Science: video and source material available
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Future work

I Continue with the specification of the
Java Collection Framework:
I Collection
I Map
I Set
I List
I etc.

I Reasoning about invariant properties
I Problem: histories of objects not called

may not remain the same

I General history-based refinement theory
I Formally verify that a class implements an interface
I LinkedList :> AbstractSequentialList :>

AbstractList :> AbstractCollection
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