
Incremental Retrospective Assertion Checking

Lukas Grätz

19th KeY Symposium

—Bergen, Norway—

10 August 2023

Software Engineering Group

Departement of Computer Science

Technical University of Darmstadt, Germany

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 1

Introduction

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 2

The Problem

Legacy software system (in use since years)

Computes or decides

White box, we have the sources!

But: Is every result or decision correct?
(right or intended or expected or in accordance with the law or ...)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 3

The Problem

Legacy software system (in use since years)

Computes or decides

White box, we have the sources!

But: Is every result or decision correct?

(right or intended or expected or in accordance with the law or ...)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 3

The Problem

Legacy software system (in use since years)

Computes or decides

White box, we have the sources!

But: Is every result or decision correct?
(right or intended or expected or in accordance with the law or ...)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 3

Examples

Sending invitations for breast cancer screenings

Ticket booking for railway trips

Your application

...

NHS Breast Screening Programme Incident

Alert Reference: CEM/CMO/2018/002
Date of issue: 02 May 2018

Action category: Important information for immediate action

Title: NHS Breast Screening Programme Incident. National screening offer to women
aged 70-79 years on 01/04/2018 who have missed a final screen

Broadcast content: Following an investigation started in January 2018, Public Health Eng-
land (PHE) and NHS England (NHSE) identified that in some instances women were not be-
ing invited for their final breast screen between their 68th and 71st birthday. Data have been
analysed back to 2009 and an estimated 206,000 women on a GP register in England, now
aged 70—79 years, will receive a letter. Those aged up to 72 will be sent a catch up screen-
ing invitation. Women aged 72 and above will be offered the opportunity for a screen. Routine
breast screening will be unaffected and most women in these age groups will still have re-
ceived their final screen.

An announcement was made by the Secretary of State for Health on Wednesday 2 May and
the Medical Director of PHE has written directly to screening services to inform them of the
issue. NHSE have also informed services. The problems, which relate to IT issues and varia-
tion in local invitation specification systems, are now resolved.

As part of this Patient Notification Exercise all of the affected women registered with a GP will
receive a letter with clear advice and signposting. Although a helpline has been established
on 0800 169 2692 women may still attend primary care for advice and support. Some may
request further clinical review of their case, particularly if cancer has been detected. Please
see the attached letter to professionals for further details of the incident, the advice to women
and links to web based material to support GPs and other primary care staff to manage pa-
tient needs. The copy of the letter being sent directly to women up to the age of 72 is at-
tached for your information and the second letter will be made available once it has been
sent to the women affected.

Attachments: - Letter to professionals
 - Patient letter 1 (up to 72 yrs at 01/04/2018)
 - NHSE letter to GPs

Actions

1. GPs should note the announcement by the Secretary
of State for Health on Wednesday 2 May and read the
attached letters

2. Practice staff should be ready to signpost affected
women to available helplines and written materials
highlighted through this alert.

Action by recipients:
NHS England Regional
offices

Enquiries: safetyalerts@mhra.gov.uk

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 4

Examples

Sending invitations for breast cancer screenings

Ticket booking for railway trips

Your application

...

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 4

Examples

Sending invitations for breast cancer screenings

Ticket booking for railway trips

Your application

...

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 4

Examples

Sending invitations for breast cancer screenings

Ticket booking for railway trips

Your application

...

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 4

intended,
expected

observed

specified

behavior

?

?
?

Semantic Bugs (Logic Bugs)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 5

Semantic Bugs (Logic Bugs)

Definition
A semantic bug violates:

observed behavior = specified behavior

observed behavior = expected behavior

Z We need specification or domain expert judgment!

Crashes, deadlocks, etc. are not semantic bugs

No specification needed

No domain expert needed

Other approaches & tools for bug finding

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 6

Semantic Bugs (Logic Bugs)

Definition
A semantic bug violates:

observed behavior = specified behavior

observed behavior = expected behavior

Z We need specification or domain expert judgment!

Crashes, deadlocks, etc. are not semantic bugs

No specification needed

No domain expert needed

Other approaches & tools for bug finding

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 6

Semantic Bugs (Logic Bugs)

Definition
A semantic bug violates:

observed behavior = specified behavior

observed behavior = expected behavior

Z We need specification or domain expert judgment!

Crashes, deadlocks, memory errors etc. are not semantic bugs

Other approaches & tools for bug finding

No specification needed

No domain expert needed

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 7

Semantic Bugs (Logic Bugs)

Definition
A semantic bug violates:

observed behavior = specified behavior

observed behavior = expected behavior

Z We need specification or domain expert judgment!

Crashes, deadlocks, memory errors etc. are not semantic bugs

Other approaches & tools for bug finding

No specification needed

No domain expert needed

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 7

Existing bug finding approaches

Design by contract

Post-hoc static verification

Regression test cases

Code review

(Trace) debugging

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 8

Goals

Design by contract less specification effort

Post-hoc static verification less specification effort

Regression test cases

better coverage

Code review

more systematic

(Trace) debugging

better visualization/navigation

SO MANY GOALS!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 9

Goals

Design by contract less specification effort

Post-hoc static verification less specification effort

Regression test cases better coverage

Code review

more systematic

(Trace) debugging

better visualization/navigation

SO MANY GOALS!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 9

Goals

Design by contract less specification effort

Post-hoc static verification less specification effort

Regression test cases better coverage

Code review more systematic

(Trace) debugging

better visualization/navigation

SO MANY GOALS!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 9

Goals

Design by contract less specification effort

Post-hoc static verification less specification effort

Regression test cases better coverage

Code review more systematic

(Trace) debugging better visualization/navigation

SO MANY GOALS!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 9

Goals

Design by contract less specification effort

Post-hoc static verification less specification effort

Regression test cases better coverage

Code review more systematic

(Trace) debugging better visualization/navigation

SO MANY GOALS!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 9

The Setting

Software to validate

With source code

Program runs R

R = {r1, r2, . . . , rN}
Large collection N >> 0

Real recorded data

Domain expert

Understands source code

Knows expected behavior in domain

Can validate & justify

Validation assistant

IDE

Assists expert with:

Debugging visualization/navigation

Specification instrumentation

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 10

The Setting

Software to validate

With source code

Program runs R

R = {r1, r2, . . . , rN}
Large collection N >> 0

Real recorded data

Domain expert

Understands source code

Knows expected behavior in domain

Can validate & justify

Validation assistant

IDE

Assists expert with:

Debugging visualization/navigation

Specification instrumentation

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 10

The Setting

Software to validate

With source code

Program runs R

R = {r1, r2, . . . , rN}
Large collection N >> 0

Real recorded data

Domain expert

Understands source code

Knows expected behavior in domain

Can validate & justify

Validation assistant

IDE

Assists expert with:

Debugging visualization/navigation

Specification instrumentation

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 10

The Setting

Software to validate

With source code

Program runs R

R = {r1, r2, . . . , rN}
Large collection N >> 0

Real recorded data

Domain expert

Understands source code

Knows expected behavior in domain

Can validate & justify

Validation assistant

IDE

Assists expert with:

Debugging visualization/navigation

Specification instrumentation

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 10

Incremental Specification

Lukas Grätz, Reiner Hähnle, Richard Bubel
Finding Semantic Bugs Fast

FASE 2022
https://doi.org/10.1007/978-3-030-99429-7_8

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 12

https://doi.org/10.1007/978-3-030-99429-7_8

Cinema Example

private double calcDscdPrice(Movie movie, int age) {
//@ assert dscdReg: getDiscount(age) == 0 assuming <regular>;
return movie.getPrice() * (1 - getDiscount(age)/100.0);

}

public void nextTicket(Scanner input) {
int age = input("Enter age: ");
//@ assume regular: 16 <= age && age < 65;

int movieNumber = input("Select movie (1/2): ");
Movie movie = movies[movieNumber];

double dscdPrice = calcDscdPrice(movie, age);
printf("Your price: %.2f ¤\n", dscdPrice);

}

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 13

Buggy max Example

int max(int a[]) {

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}

return m;
}

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 14

Checking—Buggy max Example
100 random runs from input arrays

{61, 66, 86},
{53, 37},
{84, 95, 53},
{70},
{11, 26, 6},
{15, 41, 2, 65},
{83, 33},
{79, 89},
{85, 28},
{43, 60, 59, 61},
{59, 73, 7},
{35, 85, 2, 79},
{26},
{85, 59, 68},
{38},
{35, 38, 36, 55},
{ 4, 78},
{32, 71, 22},
{25, 23, 34},
{47, 92, 64},

{60, 10},
{25, 96, 54, 0},
{89, 30, 39, 27},
{ 5, 7, 17},
{94, 19},
{66, 89, 77},
{57, 0, 53, 68},
{87, 18, 93, 76},
{49},
{96, 60},
{21, 92, 1},
{34, 89, 46},
{10, 68},
{34, 41, 91},
{25, 68, 41, 27},
{35, 47, 75, 66},
{27, 54, 47, 69},
{91, 84},
{10, 50, 82, 22},
{81, 73, 26, 15},

{63, 16, 74, 23},
{34},
{30, 10, 46, 16},
{40, 73, 63},
{80, 58, 67},
{47, 53, 83, 71},
{80, 8},
{47, 36},
{30, 50, 1, 44},
{23},
{35},
{35, 77, 92},
{67, 16},
{85, 90, 80, 15},
{ 4, 76, 70},
{48, 4, 33},
{81, 28, 92},
{71, 1, 56, 27},
{76, 94, 27, 15},
{56, 56, 69, 91},

{80, 60},
{40, 49, 95, 8},
{32, 12, 34},
{11, 30},
{87, 53, 59},
{62, 76},
{0},
{93, 54, 46, 23},
{15, 75},
{35, 50, 32, 37},
{50, 61, 99, 43},
{99},
{91, 51, 77},
{22, 65, 63},
{95, 82, 0},
{63},
{ 5, 58},
{ 8, 3},
{66, 80},
{87, 36, 87, 45},

{24},
{85},
{15, 44, 17, 24},
{92, 37, 47},
{ 6},
{44, 31},
{96, 20, 51},
{56},
{ 4, 27, 88, 21},
{30},
{63, 69},
{57, 34, 29, 52},
{38, 76, 90},
{96},
{86},
{34, 30, 10, 27},
{21, 22},
{57, 27, 66, 60},
{85, 73, 39},
{47, 32, 12}

Assistant

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 15

Checking—Buggy max Example
100 random runs from input arrays

{61, 66, 86},
{53, 37},
{84, 95, 53},
{70},
{11, 26, 6},
{15, 41, 2, 65},
{83, 33},
{79, 89},
{85, 28},
{43, 60, 59, 61},
{59, 73, 7},
{35, 85, 2, 79},
{26},
{85, 59, 68},
{38},
{35, 38, 36, 55},
{ 4, 78},
{32, 71, 22},
{25, 23, 34},
{47, 92, 64},

{60, 10},
{25, 96, 54, 0},
{89, 30, 39, 27},
{ 5, 7, 17},
{94, 19},
{66, 89, 77},
{57, 0, 53, 68},
{87, 18, 93, 76},
{49},
{96, 60},
{21, 92, 1},
{34, 89, 46},
{10, 68},
{34, 41, 91},
{25, 68, 41, 27},
{35, 47, 75, 66},
{27, 54, 47, 69},
{91, 84},
{10, 50, 82, 22},
{81, 73, 26, 15},

{63, 16, 74, 23},
{34},
{30, 10, 46, 16},
{40, 73, 63},
{80, 58, 67},
{47, 53, 83, 71},
{80, 8},
{47, 36},
{30, 50, 1, 44},
{23},
{35},
{35, 77, 92},
{67, 16},
{85, 90, 80, 15},
{ 4, 76, 70},
{48, 4, 33},
{81, 28, 92},
{71, 1, 56, 27},
{76, 94, 27, 15},
{56, 56, 69, 91},

{80, 60},
{40, 49, 95, 8},
{32, 12, 34},
{11, 30},
{87, 53, 59},
{62, 76},
{0},
{93, 54, 46, 23},
{15, 75},
{35, 50, 32, 37},
{50, 61, 99, 43},
{99},
{91, 51, 77},
{22, 65, 63},
{95, 82, 0},
{63},
{ 5, 58},
{ 8, 3},
{66, 80},
{87, 36, 87, 45},

{24},
{85},
{15, 44, 17, 24},
{92, 37, 47},
{ 6},
{44, 31},
{96, 20, 51},
{56},
{ 4, 27, 88, 21},
{30},
{63, 69},
{57, 34, 29, 52},
{38, 76, 90},
{96},
{86},
{34, 30, 10, 27},
{21, 22},
{57, 27, 66, 60},
{85, 73, 39},
{47, 32, 12}

Assistant

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 15

Buggy max Example
Validation Step (1)

int max(int a[]) { // a = {79, 89}

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}

return m; // m = 89
}Assistant

Assistant

Assistant: Is this run valid?

Expert: ...adds max1res...
Expert: Because a[1] is the result (max1res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 16

Buggy max Example
Validation Step (1)

int max(int a[]) { // a = {79, 89}

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}

return m; // m = 89
}Assistant

Assistant

Assistant: Is this run valid?

Expert: ...adds max1res...
Expert: Because a[1] is the result (max1res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 16

Buggy max Example
Validation Step (1)

int max(int a[]) { // a = {79, 89}

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming;
return m; // m = 89

}Assistant

Assistant

Assistant: Is this run valid?
Expert: ...adds max1res...

Expert: Because a[1] is the result (max1res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 17

Buggy max Example
Validation Step (1)

int max(int a[]) { // a = {79, 89}

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming;
return m; // m = 89

}Assistant

Assistant

Assistant: Is this run valid?
Expert: ...adds max1res...
Expert: Because a[1] is the result (max1res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 17

Buggy max Example
Validation Step (2)

int max(int a[]) { // a = {79, 89}

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming;
return m; // m = 89

}

Assistant

Assistant

Assistant: Why is it valid for this run to satisfy max1res?

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 18

Buggy max Example
Validation Step (2)

int max(int a[]) { // a = {79, 89}

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming;
return m; // m = 89

}

Assistant

Assistant

Assistant: Why is it valid for this run to satisfy max1res?

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 18

Buggy max Example
Validation Step (2)

int max(int a[]) { // a = {79, 89}
//@ max1of2: a.length==2 && a[0]<=a[1];
int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
return m; // m = 89

}

Assistant

Assistant

Assistant: Why is it valid for this run to satisfy max1res?

Expert: Because max1of2.

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 19

Buggy max Example
100 random runs from input arrays

{61, 66, 86},
{53, 37},
{84, 95, 53},
{70},
{11, 26, 6},
{15, 41, 2, 65},
{83, 33},
{79, 89},
{85, 28},
{43, 60, 59, 61},
{59, 73, 7},
{35, 85, 2, 79},
{26},
{85, 59, 68},
{38},
{35, 38, 36, 55},
{ 4, 78},
{32, 71, 22},
{25, 23, 34},
{47, 92, 64},

{60, 10},
{25, 96, 54, 0},
{89, 30, 39, 27},
{ 5, 7, 17},
{94, 19},
{66, 89, 77},
{57, 0, 53, 68},
{87, 18, 93, 76},
{49},
{96, 60},
{21, 92, 1},
{34, 89, 46},
{10, 68},
{34, 41, 91},
{25, 68, 41, 27},
{35, 47, 75, 66},
{27, 54, 47, 69},
{91, 84},
{10, 50, 82, 22},
{81, 73, 26, 15},

{63, 16, 74, 23},
{34},
{30, 10, 46, 16},
{40, 73, 63},
{80, 58, 67},
{47, 53, 83, 71},
{80, 8},
{47, 36},
{30, 50, 1, 44},
{23},
{35},
{35, 77, 92},
{67, 16},
{85, 90, 80, 15},
{ 4, 76, 70},
{48, 4, 33},
{81, 28, 92},
{71, 1, 56, 27},
{76, 94, 27, 15},
{56, 56, 69, 91},

{80, 60},
{40, 49, 95, 8},
{32, 12, 34},
{11, 30},
{87, 53, 59},
{62, 76},
{0},
{93, 54, 46, 23},
{15, 75},
{35, 50, 32, 37},
{50, 61, 99, 43},
{99},
{91, 51, 77},
{22, 65, 63},
{95, 82, 0},
{63},
{ 5, 58},
{ 8, 3},
{66, 80},
{87, 36, 87, 45},

{24},
{85},
{15, 44, 17, 24},
{92, 37, 47},
{ 6},
{44, 31},
{96, 20, 51},
{56},
{ 4, 27, 88, 21},
{30},
{63, 69},
{57, 34, 29, 52},
{38, 76, 90},
{96},
{86},
{34, 30, 10, 27},
{21, 22},
{57, 27, 66, 60},
{85, 73, 39},
{47, 32, 12}

Assistant

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 20

Buggy max Example
100 random runs from input arrays

{61, 66, 86},
{53, 37},
{84, 95, 53},
{70},
{11, 26, 6},
{15, 41, 2, 65},
{83, 33},
{79, 89},
{85, 28},
{43, 60, 59, 61},
{59, 73, 7},
{35, 85, 2, 79},
{26},
{85, 59, 68},
{38},
{35, 38, 36, 55},
{ 4, 78},
{32, 71, 22},
{25, 23, 34},
{47, 92, 64},

{60, 10},
{25, 96, 54, 0},
{89, 30, 39, 27},
{ 5, 7, 17},
{94, 19},
{66, 89, 77},
{57, 0, 53, 68},
{87, 18, 93, 76},
{49},
{96, 60},
{21, 92, 1},
{34, 89, 46},
{10, 68},
{34, 41, 91},
{25, 68, 41, 27},
{35, 47, 75, 66},
{27, 54, 47, 69},
{91, 84},
{10, 50, 82, 22},
{81, 73, 26, 15},

{63, 16, 74, 23},
{34},
{30, 10, 46, 16},
{40, 73, 63},
{80, 58, 67},
{47, 53, 83, 71},
{80, 8},
{47, 36},
{30, 50, 1, 44},
{23},
{35},
{35, 77, 92},
{67, 16},
{85, 90, 80, 15},
{ 4, 76, 70},
{48, 4, 33},
{81, 28, 92},
{71, 1, 56, 27},
{76, 94, 27, 15},
{56, 56, 69, 91},

{80, 60},
{40, 49, 95, 8},
{32, 12, 34},
{11, 30},
{87, 53, 59},
{62, 76},
{0},
{93, 54, 46, 23},
{15, 75},
{35, 50, 32, 37},
{50, 61, 99, 43},
{99},
{91, 51, 77},
{22, 65, 63},
{95, 82, 0},
{63},
{ 5, 58},
{ 8, 3},
{66, 80},
{87, 36, 87, 45},

{24},
{85},
{15, 44, 17, 24},
{92, 37, 47},
{ 6},
{44, 31},
{96, 20, 51},
{56},
{ 4, 27, 88, 21},
{30},
{63, 69},
{57, 34, 29, 52},
{38, 76, 90},
{96},
{86},
{34, 30, 10, 27},
{21, 22},
{57, 27, 66, 60},
{85, 73, 39},
{47, 32, 12}

Assistant

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 20

Buggy max Example
Validation Step (3)

int max(int a[]) { // a = {35, 38, 36, 55}
//@ max1of2: a.length==2 && a[0]<=a[1];

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;

return m; // m = 55
}Assistant

Assistant

Assistant: Is this run valid?

Expert: Because a[3] is the result (max3res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 21

Buggy max Example
Validation Step (3)

int max(int a[]) { // a = {35, 38, 36, 55}
//@ max1of2: a.length==2 && a[0]<=a[1];

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;

return m; // m = 55
}Assistant

Assistant

Assistant: Is this run valid?

Expert: Because a[3] is the result (max3res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 21

Buggy max Example
Validation Step (3)

int max(int a[]) { // a = {35, 38, 36, 55}
//@ max1of2: a.length==2 && a[0]<=a[1];

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
//@ assert max3res: m==a[3] assuming;
return m; // m = 55

}Assistant

Assistant

Assistant: Is this run valid?
Expert: Because a[3] is the result (max3res).

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 22

Buggy max Example
Validation Step (4)

int max(int a[]) { // a = {35, 38, 36, 55}
//@ max1of2: a.length==2 && a[0]<=a[1];

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
//@ assert max3res: m==a[3] assuming;
return m; // m = 55

}

Assistant

Assistant

Assistant: Why is it valid for this run to satisfy max3res?

Expert: Because max3of4.

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 23

Buggy max Example
Validation Step (4)

int max(int a[]) { // a = {35, 38, 36, 55}
//@ max1of2: a.length==2 && a[0]<=a[1];

int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
//@ assert max3res: m==a[3] assuming;
return m; // m = 55

}

Assistant

Assistant

Assistant: Why is it valid for this run to satisfy max3res?

Expert: Because max3of4.

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 23

Buggy max Example
Validation Step (4)

int max(int a[]) { // a = {35, 38, 36, 55}
//@ max1of2: a.length==2 && a[0]<=a[1];
//@ max3of4: a.length==4 && a[0]<=a[3] && a[1]<=a[3] && a[2]<=a[3];
int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
//@ assert max3res: m==a[3] assuming <max3of4>;
return m; // m = 55

}

Assistant

Assistant

Assistant: Why is it valid for this run to satisfy max3res?
Expert: Because max3of4.

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 24

Buggy max Example
100 random runs from input arrays

{61, 66, 86},
{53, 37},
{84, 95, 53},
{70},
{11, 26, 6},
{15, 41, 2, 65},
{83, 33},
{79, 89},
{85, 28},
{43, 60, 59, 61},
{59, 73, 7},
{35, 85, 2, 79},
{26},
{85, 59, 68},
{38},
{35, 38, 36, 55},
{ 4, 78},
{32, 71, 22},
{25, 23, 34},
{47, 92, 64},

{60, 10},
{25, 96, 54, 0},
{89, 30, 39, 27},
{ 5, 7, 17},
{94, 19},
{66, 89, 77},
{57, 0, 53, 68},
{87, 18, 93, 76},
{49},
{96, 60},
{21, 92, 1},
{34, 89, 46},
{10, 68},
{34, 41, 91},
{25, 68, 41, 27},
{35, 47, 75, 66},
{27, 54, 47, 69},
{91, 84},
{10, 50, 82, 22},
{81, 73, 26, 15},

{63, 16, 74, 23},
{34},
{30, 10, 46, 16},
{40, 73, 63},
{80, 58, 67},
{47, 53, 83, 71},
{80, 8},
{47, 36},
{30, 50, 1, 44},
{23},
{35},
{35, 77, 92},
{67, 16},
{85, 90, 80, 15},
{ 4, 76, 70},
{48, 4, 33},
{81, 28, 92},
{71, 1, 56, 27},
{76, 94, 27, 15},
{56, 56, 69, 91},

{80, 60},
{40, 49, 95, 8},
{32, 12, 34},
{11, 30},
{87, 53, 59},
{62, 76},
{0},
{93, 54, 46, 23},
{15, 75},
{35, 50, 32, 37},
{50, 61, 99, 43},
{99},
{91, 51, 77},
{22, 65, 63},
{95, 82, 0},
{63},
{ 5, 58},
{ 8, 3},
{66, 80},
{87, 36, 87, 45},

{24},
{85},
{15, 44, 17, 24},
{92, 37, 47},
{ 6},
{44, 31},
{96, 20, 51},
{56},
{ 4, 27, 88, 21},
{30},
{63, 69},
{57, 34, 29, 52},
{38, 76, 90},
{96},
{86},
{34, 30, 10, 27},
{21, 22},
{57, 27, 66, 60},
{85, 73, 39},
{47, 32, 12}

Assistant

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 25

Buggy max Example
Validation Step (4)

int max(int a[]) { // a = {56, 56, 69, 91}
//@ max1of2: a.length==2 && a[0]<=a[1];
//@ max3of4: a.length==4 && a[0]<=a[3] && a[1]<=a[3] && a[2]<=a[3];
int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
//@ assert max3res: m==a[3] assuming <max3of4>;
return m; // m = 69

}

Assistant

Assistant: Why is it valid for this run to satisfy max3res?

Expert: Because max3of4.

Checking failed, bug detected!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 26

Buggy max Example
Validation Step (4)

int max(int a[]) { // a = {56, 56, 69, 91}
//@ max1of2: a.length==2 && a[0]<=a[1];
//@ max3of4: a.length==4 && a[0]<=a[3] && a[1]<=a[3] && a[2]<=a[3];
int m = a[0];
for (int k=0; k < a.length; k++) {

if (m < a[k]) {
m = a[k++];

}
}
//@ assert max1res: m==a[1] assuming <max1of2>;
//@ assert max3res: m==a[3] assuming <max3of4>;
return m; // m = 69

}

Assistant

Assistant: Why is it valid for this run to satisfy max3res?

Expert: Because max3of4.

Checking failed, bug detected!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 26

General Description

Validation Step

1. Tool chooses existing assertion a, run r
2. Expert judges a correct for r

Z Otherwise: Bug found!

3. Expert adds assertion references <L1, . . . ,Ln> to assuming of a

3a Expert also adds all referenced assertions

4. Verification tools check a with new assumptions

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 29

(WIP) Program Run Debugging & Visualization
in the IDE

(Student Software Project)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 30

Status Quo

Conservative Debugging in IDEs

Set breakpoint

Debug ’Program’
Visualization:

1. Current line
2. Current variable values

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 31

Better

Visualization of the whole program run

1. Control Flow Path

2. All variable values

Z Simple idea, isn’t it?

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 32

Better

Visualization of the whole program run

1. Control Flow Path

2. All variable values

Z Simple idea, isn’t it?

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 32

1. Control Flow Path

Z Control flow of whole program run

Arrow: Code line executed

Pointed: Conditioned code skipped

Zickzack: Loop multiple times

Circle arrow: Function call

Link: Jump (call/return)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 33

1. Control Flow Path

Z Control flow of whole program run

Arrow: Code line executed

Pointed: Conditioned code skipped

Zickzack: Loop multiple times

Circle arrow: Function call

Link: Jump (call/return)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 33

Record, Replay, Validate

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 34

Record and Deterministic Replay

Omniscient recording/debugging (gdb)
7 High Overhead

Manual interface instrumentation (liblog, R2)

OS interface (RR debugger)
3 Low Overhead
? Stability, Security
7 Portability

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 35

Record and Deterministic Replay

Omniscient recording/debugging (gdb)
7 High Overhead

Manual interface instrumentation (liblog, R2)

OS interface (RR debugger)
3 Low Overhead
? Stability, Security
7 Portability

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 35

Record and Deterministic Replay

Omniscient recording/debugging (gdb)
7 High Overhead

Manual interface instrumentation (liblog, R2)

OS interface (RR debugger)
3 Low Overhead
? Stability, Security
7 Portability

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 35

Record and Deterministic Replay

Omniscient recording/debugging (gdb)
7 High Overhead

Manual interface instrumentation (liblog, R2)

OS interface (RR debugger)
3 Low Overhead
? Stability, Security
7 Portability

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 35

Control Flow Recording

Z Recorded trace (simplified):
0 110 0

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 36

Control Flow Recording

Z Recorded trace (simplified):
0 110 0

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 36

Control Flow Recording

Z Recorded trace (simplified):
0 110 0

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 36

Retrospective Assertion Checking

Approach Replay Assertion Checking

1 Record all inputs Concrete re-execution Run-time assertion checking
2 Deterministic replay Using a debugger (RR debugger) Interactive in debugger
3 Control flow recording Symbolic execution Check symbolic path condition +

negated assertion

Z Approaches old, except for assertion checking

3 We implemented approach 3

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 37

https://rr-project.org/

Retrospective Assertion Checking

Approach Replay Assertion Checking

1 Record all inputs Concrete re-execution Run-time assertion checking
2 Deterministic replay Using a debugger (RR debugger) Interactive in debugger
3 Control flow recording Symbolic execution Check symbolic path condition +

negated assertion

Z Approaches old, except for assertion checking

3 We implemented approach 3

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 37

https://rr-project.org/

(WIP) A Theory of Sound Dependent Assertions

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 38

Problem

Dependent assertions (our 2022 paper)

Semantics unclear

Solution: Use a meta logic

Different syntax

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 39

Problem

Dependent assertions (our 2022 paper)

Semantics unclear

Solution: Use a meta logic

Different syntax

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 39

Box & Diamond

Assertion in line 2 valid for all iterations of block in line 1

1 while (...) {
2 assert expr ;
3 }

Assertion in line 2 valid for at least one iteration of block in line 1

1 while (...) {
2 assert expr ;
3 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 40

Box & Diamond

Assertion in line 2 valid for all iterations of block in line 1

1 while (...) {
2 assert expr with [1]2;
3 }

Assertion in line 2 valid for at least one iteration of block in line 1

1 while (...) {
2 assert expr with <1>2;
3 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 40

Meta-Logic Pattern—“Postcondition” I

1 int bar () {
2 assert pre with ...;
3
4
5 CODE;
6
7
8 assert post with [1](2 → 7);
9 return 42;

10 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 41

Meta-Logic Pattern—“Postcondition” II

1 int bar () {
2 assert pre with ...;
3
4 if (...) {
5 assert post with [1](2 → 〈4〉5);
6 return 17;
7 }
8
9 return 42;

10 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 42

Meta-Logic Pattern—“Loop-Invariant” I

1 int bar () {
2 assert pre with ...;
3
4 for (...) {
5 CODE;
6 assert linv with [1](2 → [3]5);
7 }
8
9 return 42;

10 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 43

Meta-Logic Pattern—“Postcondition” III

1 int bar () {
2
3
4 for (...) {
5 CODE;
6 assert ... with ...;
7 }
8 assert post with [1]([3]5 → 7);
9 return 42;

10 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 44

Meta-Logic Pattern—“Precondition”

1 int bar () {
2 assert pre with [11](12 → [12][1] 2)
3
4
5 CODE;
6
7
8
9 return 42;

10 }
11
12 caller () {
13 assert ...;
14 bar ();
15 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 45

Meta Logic Calculus

Can use standard calculus of modal logic

Z Propositional logic + axiom K + rule of necessity

Conjecture: Our meta problems in are O(n)

Z Some derived rules

[x]A, [x](A → B) =⇒ [x]B (apply post)

[y]A, [x]([y]A → B) =⇒ [x]B (apply post-rec)

[y][x]A, [x](A → B) =⇒ [y][x]B (apply pre)

Z Name of meta logic: modal horn logic

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 46

Meta Logic Calculus

Can use standard calculus of modal logic

Z Propositional logic + axiom K + rule of necessity

Conjecture: Our meta problems in are O(n)

Z Some derived rules

[x]A, [x](A → B) =⇒ [x]B (apply post)

[y]A, [x]([y]A → B) =⇒ [x]B (apply post-rec)

[y][x]A, [x](A → B) =⇒ [y][x]B (apply pre)

Z Name of meta logic: modal horn logic

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 46

Meta Logic Calculus

Can use standard calculus of modal logic

Z Propositional logic + axiom K + rule of necessity

Conjecture: Our meta problems in are O(n)

Z Some derived rules

[x]A, [x](A → B) =⇒ [x]B (apply post)

[y]A, [x]([y]A → B) =⇒ [x]B (apply post-rec)

[y][x]A, [x](A → B) =⇒ [y][x]B (apply pre)

Z Name of meta logic: modal horn logic

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 46

Meta Logic Calculus

Can use standard calculus of modal logic

Z Propositional logic + axiom K + rule of necessity

Conjecture: Our meta problems in are O(n)

Z Some derived rules

[x]A, [x](A → B) =⇒ [x]B (apply post)

[y]A, [x]([y]A → B) =⇒ [x]B (apply post-rec)

[y][x]A, [x](A → B) =⇒ [y][x]B (apply pre)

Z Name of meta logic: modal horn logic

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 46

Insertion Sort

1 void insert(int pos, int array[len]) {
2 int value = array[pos];
3 for (int j = pos-1; j ≥ 0; j--) {
4 if (array[j] ≤ value) {
5 break;
6 }
7 array[j+1] = array[j];

assert ∀ k; 0 ≤ k ≤ j; array[k] == \old(array[k])
with [13][14, 1][3]71;

assert ∀ k; j ≤ k ≤ pos; array[k+1] == \old(array[k])
with [13][14, 1][3]73;

8 }
9 array[j+1] = value;

assert ∀ k; 0 ≤ k < pos; array[k] ≤ array[k+1]
with [13]([14, 1][3](71 ∧ 73)→ 〈14, 1〉91);

assert ∀ i; (\count k; 0 ≤ k < len; i == array[k])
== (\count k; 0 ≤ k < len; i == \old(array[k]))

with [12][13]([14, 1][3](71 ∧ 73)→ 〈14, 1〉93);
10 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 47

Insertion Sort

12 void insertionSort(int array[len]) {
13 for (int pos = 1; pos < len; pos++) {
14 insert(pos, array);
15 }

assert ∀ i; (\count k; 0 ≤ k < len; i == array[k])
== (\count k; 0 ≤ k < len; i == \old(array[k]))

with [12]([13]〈14, 1〉93 → 151);
assert ∀ k; 0 ≤ k < len-1; array[k] ≤ array[k+1]

with [12]([13]〈14, 1〉91 → 154);
16 }

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 48

Insertion Sort—Meta Logic

[13][14, 1][3]71

[13][14, 1][3]73

[13]([14, 1][3](71 ∧ 73) → 〈14, 1〉91)

[12][13]([14, 1][3](71 ∧ 73) → 〈14, 1〉93)

[12]([13]〈14, 1〉93 → 151)

[12]([13]〈14, 1〉91 → 154)

Derivable: [12]151 and [12]154 (easy exercise!)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 49

Insertion Sort—Meta Logic

[13][14, 1][3]71

[13][14, 1][3]73

[13]([14, 1][3](71 ∧ 73) → 〈14, 1〉91)

[12][13]([14, 1][3](71 ∧ 73) → 〈14, 1〉93)

[12]([13]〈14, 1〉93 → 151)

[12]([13]〈14, 1〉91 → 154)

Derivable: [12]151 and [12]154 (easy exercise!)

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 49

Note On Verification

Meta logic inferences O(n)

Verification?

Verification idea
0. Automatic assignable/accessible clause generation
1. Start symbolic execution somewhere
2. Show that the assertion holds (once or never reached, depending on assertion)
3. Do either:

3.1 Unroll loop and continue from 2
3.2 Continue from 1

Z Verification strategies depend on classification as pre-condition, loop-invariant, post-condition, ...

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 50

Note On Verification

Meta logic inferences O(n)

Verification?
Verification idea

0. Automatic assignable/accessible clause generation
1. Start symbolic execution somewhere
2. Show that the assertion holds (once or never reached, depending on assertion)
3. Do either:

3.1 Unroll loop and continue from 2
3.2 Continue from 1

Z Verification strategies depend on classification as pre-condition, loop-invariant, post-condition, ...

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 50

Note On Verification

Meta logic inferences O(n)

Verification?
Verification idea

0. Automatic assignable/accessible clause generation
1. Start symbolic execution somewhere
2. Show that the assertion holds (once or never reached, depending on assertion)
3. Do either:

3.1 Unroll loop and continue from 2
3.2 Continue from 1

Z Verification strategies depend on classification as pre-condition, loop-invariant, post-condition, ...

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 50

Conclusion

3 Incremental specifications with assertions

3 Retrospective assertion checking

3 Better debugging visualization

3 Modularity

3 Generalization of method contracts*

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 51

Initial Goals

3 Design by contract less specification effort

3 Post-hoc static verification less specification effort

3 Regression test cases better coverage

3 Code review more systematic

3 (Trace) debugging better visualization/navigation

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 52

Backup

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 53

Careful With Normal Assert/Assume in KeY

/*@ requires true;
ensures anything; */

foo () {
//@ assume false;

}

Z Inconstent specification!
Z ensures does not follow from requires alone!
Z Soundness issue: caller is not required to

establish any assume!

/*@ requires true;
ensures true; */

bar () {
//@ assert anything;

}

Z KeY might not verify specification!

Z But ensures follows trivial!

Z Modularity issue: caller cannot use assert
result!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 54

Careful With Normal Assert/Assume in KeY

/*@ requires true;
ensures anything; */

foo () {
//@ assume false;

}

Z Inconstent specification!
Z ensures does not follow from requires alone!
Z Soundness issue: caller is not required to

establish any assume!

/*@ requires true;
ensures true; */

bar () {
//@ assert anything;

}

Z KeY might not verify specification!

Z But ensures follows trivial!

Z Modularity issue: caller cannot use assert
result!

August 10, 2023 | Retrospective Assertion Checking | Lukas Grätz | 54

	Introduction
	Incremental Specification
	Program Run Debugging
	Record, Replay, Validate
	Sound Dependent Assertions
	Backup

