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o Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

® [ncorrect contracts can be verified
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We explore the underlying problem and discuss possible solutions.
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= The proof now depends on this contract
m useMethodContract was proven sound...
o ...assuming that the contract is already verified

This Does Not Cover Recursion

m Circular reasoning
®m Termination is not ensured
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I' = UV (post A wellFormed(h) A ... A exc = null — (17X = res;w) ¢), A

I'FU {nx =sem(ay,...,an);w) @, A

= mby is the termination witness
m Soundness has not been shown

o Are there theoretical issues?
o Are there practical limitations or edge cases?

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4 6 Epgbnpeermg



/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m(int num) {
if (num == 0)
return 0;
return m(num - 1);

}

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5

= oware

Engineering
Group



TECHNISCHE
UNIVERSITAT
DARMSTADT

m We can verify recursive methods

/*@ normal_behavior o Need termination witness num

@ requires num >= 0;

@ measured_by num;

@ ensures \result == 0;

0%/
int m(int num) {

if (num == @)

return @;
return m(num - 1);

}

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5 c Epgbnpeermg



TECHNISCHE
[(&7)~) UNIVERSITAT
DARMSTADT

m We can verify recursive methods

/*@ normal_behavior o Need termination witness num
@ requires num >= 0; X .
@ measured_by num; ® The proof is trivial
@ ensures \result == 0;
@x/
int m(int num) {
if (num == 0)
return 0;
return m(num - 1);

}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5 c Epgbnpeermg



/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m(int num) {
if (num == @)
return 0;
return m(num - 1);

}

TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify recursive methods
o Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5

= oitware

Engineering
Group



TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify recursive methods

/*@ normql_behavior o Need termination witness num
@ requires num >= 0,

@ measured_by num; ® The proof is trivial
g*‘j”sures \result == 8; = No additional data needed
int m(int num) { = Method m depends only on itself
if (num == 0) .
return 8: = We m.odel the dependency in a
return m(num - 1); graph:

}
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{
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}
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@ requires num >= 0;
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}
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We can verify m1 and m2
separately

Depend on each other
Recursion is still bounded by num
We have mutual recursion

More complex cycle:
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@ ensures false; o Assumes m2 is correct
vofz/m 0O A = Will then disallow m2 depending on m1
m2(); = We can close KeY and then verify m2
o KeY loses information about
/*@ normal_behavior dependencies
g*i”sures false; = Might happen accidentally
void m2() {
mi();
}

When is the rule application sound?
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® Cyclic dependencies; units depending on themselves
= Common (theorem provers, package managers, ...)

Intuitive Solution

When the cycle (recursion) is bounded, we can allow it
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Application DARMSTADT

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

= Restriction has been proven to ensure soundness
= Not too restrictive
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Implementation

Existing Checks

= Similar to the restriction above

= Constructs (a subgraph of) the Contract Dependency Graph
= Only considers loaded proofs

= Prone to (accidental) exploits

m Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

= oitware
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KeY has no notion of “project”

Per-Folder Dependencies

= Persistent, but no “project”
m Dependency information independent of environments and proofs
m When loading folder, parsing Java, creating environment, ...
o Create dependency repository, load dependency files
= Dependency files contain

o Dependencies of all proofs of a folder
o Hashes of contract and method

= oftware
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"/path/to/folder/MyClass1.java" {

}
"/path/to/folder/MyClass2.java" {

"MyClass2[m1(int)].JML normal_behavior ..."|-217247427|-979473634 {
"MyClass1[helper()].JML normal..."|102592814|2806909408

}

"MyClass2[helper()].JML normal_behavior ..."|40138075|-7495401875 {
"MyClass2[helper()].JML normal_behavior ..."|182592814|280909408
"MyClass2[m2()].JML normal_behavior ..."|4910046826|-184653318

}

}
= orvare
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= Sensible compromise to change little of KeY’s structure
= Additional files are not ideal

= Similar files are necessary/helpful for better proof management

o Completed proofs
o Changed files

Introducing KeY Projects

= What approaches and tools exist?
= How to implement this?
= Bachelor thesis/project in cooperation with KIT

= oftvare
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m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/
m Added circularity checks for model methods v/
m Proposal for solving soundness issues without undue restrictions v/
m Begin work on improved proof management
o Introduce KeY projects
Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!
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