
Soundness of Cyclic Proofs in KeY

KeY Symposium 2023

Daniel Drodt
TU Darmstadt

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 1



Introduction

Calculus of KeY must be sound

Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

Incorrect contracts can be verified

A soundness hole

We explore the underlying problem and discuss possible solutions.

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2



Introduction

Calculus of KeY must be sound
Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

Incorrect contracts can be verified

A soundness hole

We explore the underlying problem and discuss possible solutions.

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2



Introduction

Calculus of KeY must be sound
Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

Incorrect contracts can be verified

A soundness hole

We explore the underlying problem and discuss possible solutions.

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2



Introduction

Calculus of KeY must be sound
Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

Incorrect contracts can be verified
A soundness hole

We explore the underlying problem and discuss possible solutions.

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2



Introduction

Calculus of KeY must be sound
Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

Incorrect contracts can be verified
A soundness hole

We explore the underlying problem and discuss possible solutions.

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2



The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract
useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3



The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract
useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3



The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract

useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3



The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract
useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3



The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract
useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3



The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract
useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3



The Problem
Rule useMethodContractTotal

Rule useMethodContractTotal covers recursion:

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange ∧ term ≺ mby),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

mby is the termination witness
Soundness has not been shown

Are there theoretical issues?
Are there practical limitations or edge cases?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4



The Problem
Rule useMethodContractTotal

Rule useMethodContractTotal covers recursion:

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange ∧ term ≺ mby),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

mby is the termination witness

Soundness has not been shown

Are there theoretical issues?
Are there practical limitations or edge cases?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4



The Problem
Rule useMethodContractTotal

Rule useMethodContractTotal covers recursion:

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange ∧ term ≺ mby),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

mby is the termination witness
Soundness has not been shown

Are there theoretical issues?
Are there practical limitations or edge cases?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4



Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m(int num) {
if (num == 0)
return 0;

return m(num - 1);
}

We can verify recursive methods

Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself
We model the dependency in a
graph:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5



Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m(int num) {
if (num == 0)
return 0;

return m(num - 1);
}

We can verify recursive methods
Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself
We model the dependency in a
graph:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5



Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m(int num) {
if (num == 0)
return 0;

return m(num - 1);
}

We can verify recursive methods
Need termination witness num

The proof is trivial

No additional data needed
Method m depends only on itself
We model the dependency in a
graph:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5



Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m(int num) {
if (num == 0)
return 0;

return m(num - 1);
}

We can verify recursive methods
Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself

We model the dependency in a
graph:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5



Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m(int num) {
if (num == 0)
return 0;

return m(num - 1);
}

We can verify recursive methods
Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself
We model the dependency in a
graph:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5



Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m1(int num) {
return num == 0 ? 0 : m2(num-1);

}
/*@ normal_behavior

@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m2(int num) {
return num == 0 ? 0 : m1(num-1);

}

We can verify m1 and m2
separately
Depend on each other
Recursion is still bounded by num
We have mutual recursion
More complex cycle:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6



Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m1(int num) {
return num == 0 ? 0 : m2(num-1);

}
/*@ normal_behavior

@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m2(int num) {
return num == 0 ? 0 : m1(num-1);

}

We can verify m1 and m2
separately

Depend on each other
Recursion is still bounded by num
We have mutual recursion
More complex cycle:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6



Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m1(int num) {
return num == 0 ? 0 : m2(num-1);

}
/*@ normal_behavior

@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m2(int num) {
return num == 0 ? 0 : m1(num-1);

}

We can verify m1 and m2
separately
Depend on each other

Recursion is still bounded by num
We have mutual recursion
More complex cycle:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6



Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m1(int num) {
return num == 0 ? 0 : m2(num-1);

}
/*@ normal_behavior

@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m2(int num) {
return num == 0 ? 0 : m1(num-1);

}

We can verify m1 and m2
separately
Depend on each other
Recursion is still bounded by num

We have mutual recursion
More complex cycle:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6



Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m1(int num) {
return num == 0 ? 0 : m2(num-1);

}
/*@ normal_behavior

@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m2(int num) {
return num == 0 ? 0 : m1(num-1);

}

We can verify m1 and m2
separately
Depend on each other
Recursion is still bounded by num
We have mutual recursion
More complex cycle:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1

Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1

Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1

We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Cyclic Dependencies
...and their soundness

Problem

Cyclic dependencies; units depending on themselves

Common (theorem provers, package managers, ...)

Intuitive Solution

When the cycle (recursion) is bounded, we can allow it

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 8



Cyclic Dependencies
...and their soundness

Problem

Cyclic dependencies; units depending on themselves
Common (theorem provers, package managers, ...)

Intuitive Solution

When the cycle (recursion) is bounded, we can allow it

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 8



Cyclic Dependencies
...and their soundness

Problem

Cyclic dependencies; units depending on themselves
Common (theorem provers, package managers, ...)

Intuitive Solution
When the cycle (recursion) is bounded, we can allow it

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 8



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m

Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff

It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff
It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff
It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff
It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff
It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff
It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff
It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10



Terminating Cycle Theory
Application

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

Restriction has been proven to ensure soundness
Not too restrictive

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11



Terminating Cycle Theory
Application

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

Restriction has been proven to ensure soundness
Not too restrictive

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11



Terminating Cycle Theory
Application

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

Restriction has been proven to ensure soundness
Not too restrictive

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11



Terminating Cycle Theory
Application

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

Restriction has been proven to ensure soundness
Not too restrictive

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11



Implementation

Existing Checks

Similar to the restriction above
Constructs (a subgraph of) the Contract Dependency Graph
Only considers loaded proofs
Prone to (accidental) exploits
Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12



Implementation

Existing Checks

Similar to the restriction above
Constructs (a subgraph of) the Contract Dependency Graph

Only considers loaded proofs
Prone to (accidental) exploits
Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12



Implementation

Existing Checks

Similar to the restriction above
Constructs (a subgraph of) the Contract Dependency Graph
Only considers loaded proofs
Prone to (accidental) exploits

Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12



Implementation

Existing Checks

Similar to the restriction above
Constructs (a subgraph of) the Contract Dependency Graph
Only considers loaded proofs
Prone to (accidental) exploits
Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12



Implementation

Existing Checks

Similar to the restriction above
Constructs (a subgraph of) the Contract Dependency Graph
Only considers loaded proofs
Prone to (accidental) exploits
Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12



Implementation
Original Approach

KeY has no notion of “project”

Per-Folder Dependencies

Persistent, but no “project”

Dependency information independent of environments and proofs
When loading folder, parsing Java, creating environment, ...

Create dependency repository, load dependency files

Dependency files contain

Dependencies of all proofs of a folder
Hashes of contract and method

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13



Implementation
Original Approach

KeY has no notion of “project”

Per-Folder Dependencies

Persistent, but no “project”
Dependency information independent of environments and proofs

When loading folder, parsing Java, creating environment, ...

Create dependency repository, load dependency files

Dependency files contain

Dependencies of all proofs of a folder
Hashes of contract and method

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13



Implementation
Original Approach

KeY has no notion of “project”

Per-Folder Dependencies

Persistent, but no “project”
Dependency information independent of environments and proofs
When loading folder, parsing Java, creating environment, ...

Create dependency repository, load dependency files

Dependency files contain

Dependencies of all proofs of a folder
Hashes of contract and method

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13



Implementation
Original Approach

KeY has no notion of “project”

Per-Folder Dependencies

Persistent, but no “project”
Dependency information independent of environments and proofs
When loading folder, parsing Java, creating environment, ...

Create dependency repository, load dependency files
Dependency files contain

Dependencies of all proofs of a folder
Hashes of contract and method

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13



Dependency Files

"/path/to/folder/MyClass1.java" {
}

"/path/to/folder/MyClass2.java" {
"MyClass2[m1(int)].JML normal_behavior ..."|-217247427|-979473634 {

"MyClass1[helper()].JML normal..."|102592814|280909408
}
"MyClass2[helper()].JML normal_behavior ..."|40138075|-7495401875 {

"MyClass2[helper()].JML normal_behavior ..."|102592814|280909408
"MyClass2[m2()].JML normal_behavior ..."|4910046826|-184653318

}
}

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 14



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure

Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15



Conclusion

Theoretical foundation for cyclic dependencies X

Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management

Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management

Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management

Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management

Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management

Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management
Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management
Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16



Conclusion

Theoretical foundation for cyclic dependencies X
Provided proper proof of intuitive solution X

Added circularity checks for model methods X

Proposal for solving soundness issues without undue restrictions X

Begin work on improved proof management
Introduce KeY projects

Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16


	Introduction
	Recursion
	Terminating Cycle Theory
	Implementation
	Conclusion

