Soundness of Cyclic Proofs in KeY \ TECHNISCHE

UNIVERSITAT
DARMSTADT

KeY Symposium 2023

Daniel Drodt
TU Darmstadt

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 1 c Ep&npeermg

Introduction

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2 c Ep&npeermg

Introduction TECHNISCHE

UNIVERSITAT
DARMSTADT

® Calculus of KeY must be sound
o Otherwise proof does not guarantee anything

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2 c Epgbnpeermg

Introduction TECHNISCHE

UNIVERSITAT
DARMSTADT

® Calculus of KeY must be sound
o Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2 c Epgbnpeermg

Introduction 5 TECHNISCHE

UNIVERSITAT
DARMSTADT

® Calculus of KeY must be sound
o Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

® [ncorrect contracts can be verified
o A soundness hole

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2 c Epgbnpeermg

Introduction TECHNISCHE

UNIVERSITAT
DARMSTADT

® Calculus of KeY must be sound
o Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

® [ncorrect contracts can be verified
o A soundness hole

We explore the underlying problem and discuss possible solutions.

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 2 6 Epgbnpeermg

The Problem TECHNISCHE

UNIVERSITAT
Rule useMethodContract DARMSTADT

Rule useMethodContract allows usage of contract (Ypre, ¢post; ---):

I' = U(Ypre A\ wellFormed(heap) A paramsInRange), A
' UV (post A wellFormed(h) A ... A exc =null — (71X = res;w) ¢), A

U (nx =sem(ay,...,an);w) @, A

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3 c Epgbnpeermg

The Problem TECHNISCHE

UNIVERSITAT
Rule useMethodContract DARMSTADT

Rule useMethodContract allows usage of contract (¢pre, ¢post; ---):

I' = U(tpre A wellFormed(heap) A paramsIinRange), A
' F UV (post A wellFormed(h) A ... A exc =null — (71X = res;w) ¢), A

U (nx =sem(ay,...,an);w) @, A

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3 c Epgbnpeermg

The Problem 5 TECHNISCHE

UNIVERSITAT
Rule useMethodContract DARMSTADT

Rule useMethodContract allows usage of contract (Ypre, ¢post; ---):

I' = U(Ypre A\ wellFormed(heap) A paramsInRange), A
' UV (post A wellFormed(h) A ... A exc =null — (71X = res;w) ¢), A

U (nx =sem(ay,...,an);w) @, A

= The proof now depends on this contract

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3 c Epgbnpeermg

The Problem TECHNISCHE

UNIVERSITAT
Rule useMethodContract DARMSTADT

Rule useMethodContract allows usage of contract (Ypre, ¢post; ---):

I' = U(Ypre A\ wellFormed(heap) A paramsInRange), A
' UV (post A wellFormed(h) A ... A exc =null — (71X = res;w) ¢), A

U (nx =sem(ay,...,an);w) @, A

= The proof now depends on this contract
m useMethodContract was proven sound...

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3 6 Epgbnpeermg

The Problem 5 TECHNISCHE

UNIVERSITAT
Rule useMethodContract DARMSTADT

Rule useMethodContract allows usage of contract (Ypre, ¢post; ---):

I' = U(Ypre A\ wellFormed(heap) A paramsInRange), A
' UV (post A wellFormed(h) A ... A exc =null — (71X = res;w) ¢), A

U (nx =sem(ay,...,an);w) @, A

= The proof now depends on this contract
m useMethodContract was proven sound...
o ...assuming that the contract is already verified

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3 6 Epgbnpeermg

The Problem TECHNISCHE

J/=\ UNIVERSITAT
Rule useMethodContract 9 DARMSTADT

Rule useMethodContract allows usage of contract (Ypre, ¢post; ---):

I' = U(Ypre A\ wellFormed(heap) A paramsInRange), A
' UV (post A wellFormed(h) A ... A exc =null — (71X = res;w) ¢), A

U (nx =sem(ay,...,an);w) @, A

= The proof now depends on this contract
m useMethodContract was proven sound...
o ...assuming that the contract is already verified

This Does Not Cover Recursion

m Circular reasoning
®m Termination is not ensured

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 3 6 Epgbnpeermg

The Problem TECHNISCHE

UNIVERSITAT
Rule useMethodContractTotal DARMSTADT

Rule useMethodContractTotal covers recursion:

I' = U(1ppre N wellFormed(heap) A paramsInRange A term < mby), A
I' = UV (post A wellFormed(h) A ... A exc = null — (17X = res;w) ¢), A

I'FU {nx =sem(ay,...,an);w) @, A

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4 c Epgbnpeermg

The Problem TECHNISCHE

%\ UNIVERSITAT
Rule useMethodContractTotal 5 DARMSTADT

Rule useMethodContractTotal covers recursion:

I' = U(1ppre N wellFormed(heap) A paramsInRange A term < mby), A
I' = UV (post A wellFormed(h) A ... A exc = null — (17X = res;w) ¢), A

IF'FU (rx = se.m(aq, ..., an);w) @, A

® mby is the termination witness

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4 c Epgbnpeermg

The Problem TECHNISCHE

%\ UNIVERSITAT
Rule useMethodContractTotal 5 DARMSTADT

Rule useMethodContractTotal covers recursion:

I' = U(1ppre N wellFormed(heap) A paramsInRange A term < mby), A
I' = UV (post A wellFormed(h) A ... A exc = null — (17X = res;w) ¢), A

I'FU {nx =sem(ay,...,an);w) @, A

= mby is the termination witness
m Soundness has not been shown

o Are there theoretical issues?
o Are there practical limitations or edge cases?

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 4 6 Epgbnpeermg

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m(int num) {
if (num == 0)
return 0;
return m(num - 1);

}

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5

= oware

Engineering
Group

TECHNISCHE
UNIVERSITAT
DARMSTADT

m We can verify recursive methods

/*@ normal_behavior o Need termination witness num

@ requires num >= 0;

@ measured_by num;

@ ensures \result == 0;

0%/
int m(int num) {

if (num == @)

return @;
return m(num - 1);

}

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5 c Epgbnpeermg

TECHNISCHE
[(&7)~) UNIVERSITAT
DARMSTADT

m We can verify recursive methods

/*@ normal_behavior o Need termination witness num
@ requires num >= 0; X .
@ measured_by num; ® The proof is trivial
@ ensures \result == 0;
@x/
int m(int num) {
if (num == 0)
return 0;
return m(num - 1);

}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5 c Epgbnpeermg

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m(int num) {
if (num == @)
return 0;
return m(num - 1);

}

TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify recursive methods
o Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5

= oitware

Engineering
Group

TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify recursive methods

/*@ normql_behavior o Need termination witness num
@ requires num >= 0,

@ measured_by num; ® The proof is trivial
g*‘j”sures \result == 8; = No additional data needed
int m(int num) { = Method m depends only on itself
if (num == 0) .
return 8: = We m.odel the dependency in a
return m(num - 1); graph:

}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 5 6 Epgbnpeermg

al Recursion TECHNISCHE

UNIVERSITAT
DARMSTADT

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*x/
int m1(int num)

{

return num == 0 ? @ : m2(num-1);
}
/*@ normal_behavior

@ requires num >= 0;

@ measured_by num;

@ ensures \result == @;

@x/
int m2(int num) {

return num == 0 ? @ : mi1(num-1);
}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6 c Epgbnpeermg

Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*x/
int m1(int num)
return num ==
}
/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m2(int num)
return num ==

}

{
0?0 : m2(num-1);

{
0?0 : m(num-1);

TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify m1 and m2
separately

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6

= soitware

Engineering
Group

Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*x/
int m1(int num)
return num ==
}
/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m2(int num)
return num ==

}

{
0?0 : m2(num-1);

{
0?0 : m(num-1);

TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify m1 and m2
separately

= Depend on each other

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6

= soitware

Engineering
Group

Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*x/
int m1(int num)
return num ==
}
/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m2(int num)
return num ==

}

{
0?0 : m2(num-1);

{
0?0 : m(num-1);

TECHNISCHE
UNIVERSITAT
DARMSTADT

= We can verify m1 and m2
separately

= Depend on each other
= Recursion is still bounded by num

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6

= soitware

Engineering
Group

Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*x/
int m1(int num)
return num ==
}
/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == @;
@x/
int m2(int num)
return num ==

}

{
0?0 : m2(num-1);

{
0?0 : m(num-1);

TECHNISCHE
UNIVERSITAT
DARMSTADT

We can verify m1 and m2
separately

Depend on each other
Recursion is still bounded by num
We have mutual recursion

More complex cycle:

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 6

= soitware

Engineering
Group

Mutual Recursion TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

/*@ normal_behavior
@ ensures false;
@*/

void m2() {

mi();

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 c Epgbnpeermg

Mutual Recursion 4 TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/%@ normal_behavior m KeY allows verification of m1

@ ensures false;
@*/

void m1() {
m2();

/*@ normal_behavior
@ ensures false;
@*/

void m2() {

mi();

}

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 c Epgbnpeermg

Mutual Recursion 4 TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/%@ normal_behavior m KeY allows verification of m1
g ‘;”S”res false; o Assumes m2 is correct
*
void m1() {
m2();

/*@ normal_behavior
@ ensures false;
@*/

void m2() {

mi();

}

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 c Epgbnpeermg

Mutual Recursion 4 TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/%@ normal_behavior m KeY allows verification of m1
g ‘;”S”res false; o Assumes m2 is correct
*
void m1() { = Will then disallow m2 depending on m1
m2();

/*@ normal_behavior
@ ensures false;
@*/

void m2() {

mi();

}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 c Epgbnpeermg

Mutual Recursion TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/%@ normal_behavior m KeY allows verification of m1
g i”sures false; o Assumes m2 is correct
*
void m1() { = Will then disallow m2 depending on m1
m2(); = We can close KeY and then verify m2
o KeY loses information about
/*@ normal_behavior dependencies
@ ensures false;
@x/
void m2() {
mi();
}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 6 Epgbnpeermg

Mutual Recursion TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/%@ normal_behavior m KeY allows verification of m1
@ ensures false; o Assumes m2 is correct
vofz/m 0O A = Will then disallow m2 depending on m1
m2(); = We can close KeY and then verify m2
o KeY loses information about
/*@ normal_behavior dependencies
g*i”sures false; = Might happen accidentally
void m2() {
mi();
}

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 6 Epgbnpeermg

Mutual Recursion TECHNISCHE

UNIVERSITAT
Unsound Proofs DARMSTADT

/%@ normal_behavior m KeY allows verification of m1
@ ensures false; o Assumes m2 is correct
vofz/m 0O A = Will then disallow m2 depending on m1
m2(); = We can close KeY and then verify m2
o KeY loses information about
/*@ normal_behavior dependencies
g*i”sures false; = Might happen accidentally
void m2() {
mi();
}

When is the rule application sound?

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7 6 Epgbnpeermg

Cyclic Dependencies .\ TECHNISCHE

; UNIVERSITAT
...and their soundness DARMSTADT

Problem

® Cyclic dependencies; units depending on themselves

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 8 6 Epgbnpeermg

Cyclic Dependencies .\ TECHNISCHE

; UNIVERSITAT
...and their soundness DARMSTADT

Problem

® Cyclic dependencies; units depending on themselves
= Common (theorem provers, package managers, ...)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 8 6 Epgbnpeermg

Cyclic Dependencies .\ TECHNISCHE

; UNIVERSITAT
...and their soundness DARMSTADT

® Cyclic dependencies; units depending on themselves
= Common (theorem provers, package managers, ...)

Intuitive Solution

When the cycle (recursion) is bounded, we can allow it

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 8 6 Epgbnpeermg

Modeling Proof Dependencies TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 c Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m
m Arc from (c1,m;) to (¢, ms) iff proof for (c1,m;) depends on (¢, ms)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m
m Arc from (c1,m;) to (¢, ms) iff proof for (c1,m;) depends on (¢, ms)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m
m Arc from (c1,m;) to (¢, ms) iff proof for (c1,m;) depends on (¢, ms)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m
m Arc from (c1,m;) to (¢, ms) iff proof for (c1,m;) depends on (¢, ms)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m
m Arc from (c1,m;) to (¢, ms) iff proof for (c1,m;) depends on (¢, ms)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Modeling Proof Dependencies \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Contract Dependency Graph

= Vertices are pairs of contracts ¢ and methods m
m Arc from (c1,m;) to (¢, ms) iff proof for (c1,m;) depends on (¢, ms)

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 9 6 Epgbnpeermg

Terminating Cycle Theory

Terminating Graph

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 Epgbnpeermg

Terminating Cycle Theory TECHNISCHE

=) UNIVERSITAT
DARMSTADT

Terminating Graphs

m Strongly connected component is terminating iff

o It contains no arc or
o Every contract has termination witness

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 Epgbnpeermg

Terminating Cycle Theory TECHNISCHE

UNIVERSITAT
DARMSTADT

Terminating Graphs

m Strongly connected component is terminating iff
o It contains no arc or
o Every contract has termination witness
® Graph is called terminating iff every strongly connected component is
terminating

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 E\;g\unpeermg

Terminating Cycle Theory . TECHNISCHE

UNIVERSITAT
DARMSTADT

Terminating Graphs

= Strongly connected component is terminating iff
o It contains no arc or
o Every contract has termination witness
= Graph is called terminating iff every strongly connected component is
terminating

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 E\;g\unpeermg

Terminating Cycle Theory . TECHNISCHE

UNIVERSITAT
DARMSTADT

Terminating Graphs

= Strongly connected component is terminating iff
o It contains no arc or
o Every contract has termination witness
= Graph is called terminating iff every strongly connected component is
terminating

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 E\;g\unpeermg

Terminating Cycle Theory . TECHNISCHE

UNIVERSITAT
DARMSTADT

Terminating Graphs

= Strongly connected component is terminating iff
o It contains no arc or
o Every contract has termination witness
= Graph is called terminating iff every strongly connected component is
terminating

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 E\;g\unpeermg

Terminating Cycle Theory . TECHNISCHE

UNIVERSITAT
DARMSTADT

Terminating Graphs

= Strongly connected component is terminating iff
o It contains no arc or
o Every contract has termination witness
= Graph is called terminating iff every strongly connected component is
terminating

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 10 6 E\;g\u\éeermg

Terminating Cycle Theory . TECHNISCHE

L. UNIVERSITAT
Application DARMSTADT

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11 6 Epgbnpeermg

Terminating Cycle Theory . TECHNISCHE

L. UNIVERSITAT
Application DARMSTADT

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract

Dependency Graph

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11 6 Epgbnpeermg

Terminating Cycle Theory . TECHNISCHE

L. UNIVERSITAT
Application DARMSTADT

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11 6 Epgbnpeermg

Terminating Cycle Theory . TECHNISCHE

L. UNIVERSITAT
Application DARMSTADT

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

= Restriction has been proven to ensure soundness
= Not too restrictive

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 11 6 Epgbnpeermg

Implementation 4 TECHNISCHE
UNIVERSITAT
DARMSTADT

Existing Checks

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12 6 Epgbnpeermg

Implementation 4 TECHNISCHE

UNIVERSITAT
DARMSTADT

Existing Checks

m Similar to the restriction above
= Constructs (a subgraph of) the Contract Dependency Graph

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12 6 E\;g\unpeermg

Implementation 4 TECHNISCHE

UNIVERSITAT
DARMSTADT

Existing Checks

Similar to the restriction above

Constructs (a subgraph of) the Contract Dependency Graph
Only considers loaded proofs

Prone to (accidental) exploits

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12 6 E\;g\u\éeermg

Implementation TECHNISCHE
UNIVERSITAT
DARMSTADT

Existing Checks

= Similar to the restriction above

= Constructs (a subgraph of) the Contract Dependency Graph
= Only considers loaded proofs

= Prone to (accidental) exploits

m Additional tools exists, e.g., by Wolfram Pfeifer

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12 6 E\;g\u\éeermg

Implementation

Existing Checks

= Similar to the restriction above

= Constructs (a subgraph of) the Contract Dependency Graph
= Only considers loaded proofs

= Prone to (accidental) exploits

m Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 12 6 E\;g\u\éeermg

Implementation 4 TECHNISCHE

ol UNIVERSITAT
Original Approach DARMSTADT

KeY has no notion of “project”

Per-Folder Dependencies

= Persistent, but no “project”

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13 6 E\;g\u\éeermg

Implementation TECHNISCHE

ol UNIVERSITAT
Original Approach DARMSTADT

KeY has no notion of “project”

Per-Folder Dependencies

= Persistent, but no “project”
m Dependency information independent of environments and proofs

= soitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13 6 E\rwg\u\éeermg

Implementation TECHNISCHE

ol UNIVERSITAT
Original Approach DARMSTADT

KeY has no notion of “project”

Per-Folder Dependencies

= Persistent, but no “project”
m Dependency information independent of environments and proofs

= When loading folder, parsing Java, creating environment, ...
o Create dependency repository, load dependency files

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13 6 E\rwg\u\éeermg

Implementation TECHNISCHE

U /=) UNIVERSITAT
Original Approach J DARMSTADT

KeY has no notion of “project”

Per-Folder Dependencies

= Persistent, but no “project”
m Dependency information independent of environments and proofs
m When loading folder, parsing Java, creating environment, ...
o Create dependency repository, load dependency files
= Dependency files contain

o Dependencies of all proofs of a folder
o Hashes of contract and method

= oftware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 13 6 E\rwg\u\éeermg

Dependency Files TECHNISCHE

UNIVERSITAT
DARMSTADT

"/path/to/folder/MyClass1.java" {

}
"/path/to/folder/MyClass2.java" {

"MyClass2[m1(int)].JML normal_behavior ..."|-217247427|-979473634 {
"MyClass1[helper()].JML normal..."|102592814|2806909408

}

"MyClass2[helper()].JML normal_behavior ..."|40138075|-7495401875 {
"MyClass2[helper()].JML normal_behavior ..."|182592814|280909408
"MyClass2[m2()].JML normal_behavior ..."|4910046826|-184653318

}

}
= orvare

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 14 6 Epgbnpeermg

Current Implementation Plan TECHNISCHE

UNIVERSITAT
DARMSTADT

comings of Dependency Files

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 6 Epgbnpeermg

Current Implementation Plan .\ TECHNISCHE

UNIVERSITAT
DARMSTADT

omings of Dependency Files

= Sensible compromise to change little of KeY’s structure

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 6 Epgbnpeermg

Current Implementation Plan TECHNISCHE

UNIVERSITAT
DARMSTADT

Shortcomings of Dependency Files

= Sensible compromise to change little of KeY’s structure
= Additional files are not ideal
= Similar files are necessary/helpful for better proof management

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 6 E\;g\unpeermg

Current Implementation Plan \ TECHNISCHE

UNIVERSITAT
DARMSTADT

Shortcomings of Dependency Files

= Sensible compromise to change little of KeY’s structure
= Additional files are not ideal

= Similar files are necessary/helpful for better proof management

o Completed proofs
o Changed files

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 6 E\;g\u\éeermg

Current Implementation Plan TECHNISCHE
UNIVERSITAT
DARMSTADT

Shortcomings of Dependency Files

= Sensible compromise to change little of KeY’s structure
= Additional files are not ideal

= Similar files are necessary/helpful for better proof management

o Completed proofs
o Changed files

Introducing KeY Projects

= oftvare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 6 E\rwg\u\éeermg

Current Implementation Plan

Shortcomings of Dependency Files

= Sensible compromise to change little of KeY’s structure
= Additional files are not ideal

= Similar files are necessary/helpful for better proof management

o Completed proofs
o Changed files

Introducing KeY Projects

= What approaches and tools exist?
= How to implement this?

= oftvare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 6 E\rwg\u\éeermg

Current Implementation Plan

Shortcomings of Dependency Files

= Sensible compromise to change little of KeY’s structure
= Additional files are not ideal

= Similar files are necessary/helpful for better proof management

o Completed proofs
o Changed files

Introducing KeY Projects

= What approaches and tools exist?
= How to implement this?
= Bachelor thesis/project in cooperation with KIT

= oftvare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 15 c E\rwg\u\éeermg

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 c Ep&npeermg

TECHNISCHE
[(&7)~) UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 c Epgbnpeermg

TECHNISCHE
UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/

m Added circularity checks for model methods v/

= Soivare
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 c Epgbnpeermg

TECHNISCHE
UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/

m Added circularity checks for model methods v/
m Proposal for solving soundness issues without undue restrictions v/

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 c Epgbnpeermg

TECHNISCHE
UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/

m Added circularity checks for model methods v/
m Proposal for solving soundness issues without undue restrictions v/
m Begin work on improved proof management

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 6 Epgbnpeermg

TECHNISCHE
UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/
m Added circularity checks for model methods v/
m Proposal for solving soundness issues without undue restrictions v/
m Begin work on improved proof management
o Introduce KeY projects

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 6 Epgbnpeermg

TECHNISCHE
UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/
m Added circularity checks for model methods v/
m Proposal for solving soundness issues without undue restrictions v/
m Begin work on improved proof management
o Introduce KeY projects
Overall: Improve correctness of KeY and increase trust in proofs

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 6 Epgbnpeermg

TECHNISCHE
UNIVERSITAT
DARMSTADT

m Theoretical foundation for cyclic dependencies v/
o Provided proper proof of intuitive solution v/
m Added circularity checks for model methods v/
m Proposal for solving soundness issues without undue restrictions v/
m Begin work on improved proof management
o Introduce KeY projects
Overall: Improve correctness of KeY and increase trust in proofs

Thank you for your attention!

= oitware
8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 16 6 Epgbnpeermg

	Introduction
	Recursion
	Terminating Cycle Theory
	Implementation
	Conclusion

