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Introduction

Calculus of KeY must be sound

Otherwise proof does not guarantee anything

One Rule of KeY Is Not Properly Proven Sound

Incorrect contracts can be verified

A soundness hole

We explore the underlying problem and discuss possible solutions.
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The Problem
Rule useMethodContract

Rule useMethodContract allows usage of contract (ψpre, ψpost, ...):

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

The proof now depends on this contract
useMethodContract was proven sound...

...assuming that the contract is already verified

This Does Not Cover Recursion

Circular reasoning
Termination is not ensured
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The Problem
Rule useMethodContractTotal

Rule useMethodContractTotal covers recursion:

Γ ` U(ψpre ∧ wellFormed(heap) ∧ paramsInRange ∧ term ≺ mby),∆
Γ ` UV(ψpost ∧ wellFormed(h) ∧ ... ∧ exc .

= null → 〈πx = res;ω〉ϕ),∆

Γ ` U 〈πx = se.m(a1, ...,an);ω〉ϕ,∆

mby is the termination witness
Soundness has not been shown

Are there theoretical issues?
Are there practical limitations or edge cases?
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Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m(int num) {
if (num == 0)
return 0;

return m(num - 1);
}

We can verify recursive methods

Need termination witness num

The proof is trivial
No additional data needed
Method m depends only on itself
We model the dependency in a
graph:
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Mutual Recursion

/*@ normal_behavior
@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m1(int num) {
return num == 0 ? 0 : m2(num-1);

}
/*@ normal_behavior

@ requires num >= 0;
@ measured_by num;
@ ensures \result == 0;
@*/

int m2(int num) {
return num == 0 ? 0 : m1(num-1);

}

We can verify m1 and m2
separately
Depend on each other
Recursion is still bounded by num
We have mutual recursion
More complex cycle:
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Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1

Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1

Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1

We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Mutual Recursion
Unsound Proofs

/*@ normal_behavior
@ ensures false;
@*/

void m1() {
m2();

}

/*@ normal_behavior
@ ensures false;
@*/

void m2() {
m1();

}

KeY allows verification of m1
Assumes m2 is correct

Will then disallow m2 depending on m1
We can close KeY and then verify m2

KeY loses information about
dependencies

Might happen accidentally

When is the rule application sound?

8 August 2023 | Software Engineering Group | TU Darmstadt | Daniel Drodt | 7



Cyclic Dependencies
...and their soundness

Problem

Cyclic dependencies; units depending on themselves

Common (theorem provers, package managers, ...)

Intuitive Solution

When the cycle (recursion) is bounded, we can allow it
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Modeling Proof Dependencies

Contract Dependency Graph

Vertices are pairs of contracts c and methods m
Arc from (c1,m1) to (c2,m2) iff proof for (c1,m1) depends on (c2,m2)
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Terminating Cycle Theory

Terminating Graphs

Strongly connected component is terminating iff

It contains no arc or
Every contract has termination witness

Graph is called terminating iff every strongly connected component is
terminating
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Terminating Cycle Theory
Application

Restriction to Rule Applications

Only permit rule applications that result in a terminating Contract
Dependency Graph

Restriction has been proven to ensure soundness
Not too restrictive
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Implementation

Existing Checks

Similar to the restriction above
Constructs (a subgraph of) the Contract Dependency Graph
Only considers loaded proofs
Prone to (accidental) exploits
Additional tools exists, e.g., by Wolfram Pfeifer

We need to have persistent information of the global proof state!
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Implementation
Original Approach

KeY has no notion of “project”

Per-Folder Dependencies

Persistent, but no “project”

Dependency information independent of environments and proofs
When loading folder, parsing Java, creating environment, ...

Create dependency repository, load dependency files

Dependency files contain

Dependencies of all proofs of a folder
Hashes of contract and method
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Dependency Files

"/path/to/folder/MyClass1.java" {
}

"/path/to/folder/MyClass2.java" {
"MyClass2[m1(int)].JML normal_behavior ..."|-217247427|-979473634 {

"MyClass1[helper()].JML normal..."|102592814|280909408
}
"MyClass2[helper()].JML normal_behavior ..."|40138075|-7495401875 {

"MyClass2[helper()].JML normal_behavior ..."|102592814|280909408
"MyClass2[m2()].JML normal_behavior ..."|4910046826|-184653318

}
}
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Current Implementation Plan

Shortcomings of Dependency Files

Sensible compromise to change little of KeY’s structure
Additional files are not ideal
Similar files are necessary/helpful for better proof management

Completed proofs
Changed files

Introducing KeY Projects

What approaches and tools exist?
How to implement this?

⇒ Bachelor thesis/project in cooperation with KIT
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