
Discussions in Breakout 
Groups

Results and Insights



Cooperation of KeY and Other Tools (Jonas Klamroth)

- JML as main exchange format
- how to store proofs?

- Integration of witnesses
- non-JML tools

- give annotations that let KeY reconstruct proof
- encoding intermediate states as JML (or assume/assert statements)
- tools can interact on states of symbolic execution graphs
- theories are axiomatised differently for different tools -> source for 

communication issues?
- potential for exploiting different strengths of different tools



Trust in Proofs (Hans-Dieter Hiep)

Consistency

Meta-theory

Language core

Logic core

open-world: programs and theories

conservative/modular extensions

reloading proofs / reproducing

“seal of approval”: proof management

What taclets are used in a proof.

Verified Checker

“Who needs trust?”



"Why doesn't everyone use formal verification (yet) and 
what can we do about it?" (Joshua Bachmeier)

● Industry lives in different world, Rapid 
Development. Best case: TDD

● Benefits of FV are too indirect, but cost is 
immediate

● Even if engineers know about FV, 
management doesn’t know or care

● Industry often has more basic problems / 
flaws than correctness

● Start in education: engineers / SW-devs, 
students of practical fields must learn 
about FV in courses again & again

● Find pain-points of industry (time & 
money) and where FV can yield savings:

○ Where the error-case is expensive
○ Certification process of large appliances / 

systems
● Specification that is understandable by 

non-formal-experts and applicable to wide 
range of applications (avoid relearning)

● Error messages

=> Shift reputation of FV from theoretical topic (scientists in ivory tower) to practical tool



Future Application Domains (Eduard Kamburjan)

Application Domains

● CPS
● Databases
● Non-sequential programs

Modularity on the Logic and Dynamic Logic Level

Possible Combinations of State Logics and Different Dynamic Logics

Potential Inspirations

● Fibring
● SMT like



User Interface / Usability (Wolfram Pfeifer)

● Syntax highlighting and early feedback on syntax errors is important (and 
should be consistent with the view in KeY)

● Different interaction paradigms:
○ GUI point-and-click
○ Scripts
○ API

● Good error messages/feedback are important.
● Interaction features/paradigms/concepts need a clear requirements 

specification



AI for Verification (Thomas Baar)

● Short session with ChatGPT for “What is the JML invariant for …”
○ answer looked nice at the first glance but turned out to be crap when evaluated by experts
○ General observation: answers generally look appealing but (still) turn out to be wrong

● Leads to general question: “Can we trust AI-systems?”
○ Application scenarios can be split into two categories:

■ One cannot (or can hardly) verify/falsify the suggestions be AI-systems (e.g. classification traffic signs)
● These scenarios are not discussed further by our group

■ One can verify/falsify the suggestions
● This would be case for scenario “Please generate VeriFast-annotation for given program’

○ One would just start VeriFast for the suggested annotation
● Conclusion/Observation

○ Implementation code might be generated to a large extend in future -> nobody can trust implementation code 
any longer -> heavily increases the need for formal software verification :-)

We are in the advent of the wide usage of formal methods for establishing trust in implementation 
code co-autored by systems like ChapGPT!


