
Edition2023

Lightning Talks
What happened in KeY since the last Symposium?

1. KeY on GitHub (Alexander Weigl)
2. Assume and Assert (Florian Lanzinger)
3. Free Invariants and Assignables (Florian Lanzinger)
4. Math modes (Mattias Ulbrich)
5. Proof Management (Wolfram Pfeifer)
6. Support of Final Fields (Mattias Ulbrich)
7. Redux Maker Tool (Lukas Grätz)
8. Support for Java 21 (Alexander Weigl)
9. Towards Language Independent Formulas (Daniel Drodt)

10. SolidiKeY (Wolfgang Ahrendt)

KeY on Github
Alexander Weigl

❤+ =
● We moved to Github on Feb, 01.
● Main development and sources are now under:

https://github.com/keyproject/key

 KeY on GitHub

● Feel free to collaborate
● Rights for merging can be granted

● Gitlab instance remains

Home for Case Studies

Gathering of Case Studies

Archive, Reuse, Knowledge Base,
Proof Mining, …

⛏ + 🌳 = 💎

Please contribute your
KeY Case Studies

Assume and Assert
Florian Lanzinger

Assume and assert statements for JML

Proof tree:

● JML assume: Usage
(add field == 40 to
antecedent)

● JML assert
○ Validity (add field == 41

to succedent)
○ Usage (add field == 41

to antecedent)

Free Invariants and
Assignables

Florian Lanzinger

Free specifications in JML

● Specifications that can be
used without being proven
are called “free”

● Unsound if used incorrectly
● But useful to encode

information from previously
done proofs / other tools /
etc.

● So far: requires_free,
ensures_free, assume

Free specifications in JML

● So far: requires_free,
ensures_free, assume

● New: assignable_free

Free specifications in JML

● So far: requires_free,
ensures_free, assume

● New: assignable_free
● New: invariant_free

Free specifications in JML

● So far: requires_free,
ensures_free, assume

● New: assignable_free
● New: invariant_free

Math Mode
Mattias Ulbrich

Proof Management
Wolfram Pfeifer

Problems with verification projects (> 1 contract)

● Source code, specification, proofs consistent?
● Unproven (but used) contracts?
● Proof settings compatible?
● Dependency cycles?

KeY has a built-in proof management. However, it

● only considers proofs loaded at the same time in the GUI.
● only considers proofs in the same environment.
● does not check settings.
● does not check all dependencies (model methods, dependency contracts, …).

Proof Bundles
bundle.zproof
- src // java classes (.java files only)
 - A.java
 - mypackage
 - B.java
 - C.java
- classpath // optional: may contain .jar files and
 // directories with .java and/or .class files
- bootclasspath // optional: system classes from the Java class
 // library, replace the files shipped with KeY
 // .key and .proof files (top level)
- rules.key
- project.key
- A[A::m1(int)].JML operation contract.0.proof
- A[A::m2(int)].JML operation contract.0.proof
- B[B::m1(int)].JML operation contract.0.proof
- C[C::m1(int)].JML operation contract.0.proof

● Directory or zip file
● “File”→“Save Proof as Bundle”

(single proof)
● Can be merged via

./pm merge b1 b2 … output

Proof Management Tool

Post-hoc checks (CLI or GUI extension)

./pm check --settings --replay bundle

● MissingProofsChecker
● SettingsChecker
● ReplayChecker
● DependencyChecker

→ outputs a command line or HTML report

Documentation: Readme in repo

Outlook: We can do better than post-hoc
 checks → talk by Daniel Drodt

Support of Final Fields
Mattias Ulbrich

Expensive heaps

Reading fields from heaps can be expensive during reasoning (for the calculus)

Consider: class F { final int f; },
then by design of Java, f cannot change its value.

Yet, difficult to prove in KeY:

 obj.f@heap[other.x := 42][anon(other.fp, h2)][create(obj2)]
 = obj.f

Solution: Final fields are not on the heap

Heap:

T T::select(Heap, Object, Field)
Heap store(Heap, Object, Field, Any)
…

Finals:

T T::final(Object, Field) … do not care about the heap

Challenge:

Finals may be changed in constructors (--> do not use this then)

Outlook: Heaps and Dependencies

Framing Properties are still a challenge in KeY

Dynamic Frames are a very flexible solution,
yet require a lot of reasoning not needed in 90% of the cases

Working on:

● Final fields (as shown)
● Exploit patterns in dynamic frame specifications to simplify obligations
● Combining ownership with dynamic frames

Redux MakerTool
Lukas Grätz

(Master Thesis by Fabian Bauer)

Status Quo in KeY

● Referenced classes must be loaded
○ Otherwise KeY can’t start
○ Loading all sources takes too long

● Old StubMaker
○ Eclipse plugin
○ Input: Java sources ≤ 1.6
○ Output: Stubs

● Hand-written contracts
○ Not exhaustive
○ Some wrong/inconsistent

Goal

● Stand alone tool
● Support for modern Java
● Automatic contract generation

Result: ReduxMaker

● Implemented
○ Easy to use, stand-alone tool
○ Contract templates

● Input
○ Java source or bytecode

● Output
○ Stubs
○ Assignable clauses
○ Termination behavior (diverges or not)
○ Contracts from the templates

● TODO
○ Publish
○ Explain in KeY’s wiki

Support for Java 21
Alexander Weigl

State of Java-Support

● KeY supports Java 1.4ish
● Main Blocker:

Recoder Framework
for parsing and Java

Autumn 2023
Java 21

KeY is here

separate talk

JavaParser

javaparser/javaparser

Fork

Fork

Parser, AST and Name Resolution for
 ProofJava and SchemaJava

Support for: method frame, loop scopes,
schema variables, transaction commands,
meta-constructs, #typeof, …

wadoon/key-javaparser

jmltoolkit/jmlparser

State of integration

99.9% key.core
<20% run-all-proofs

Towards Language
Independent Formulas

Daniel Drodt

Making KeY Language Independent

● KeY is designed for Java
● We aim to make it usable for many

languages
● First task: Terms

○ Current term structure is designed for Java
○ Interfaces and matching logic is not

language-independent
○ We want to redesign terms, formulas and

language elements

If you have comments/input, please reach out!

SolidiKeY
Wolfgang Ahrendt

KeY for Smart Contracts: Logic and Calculus

● Datatypes:
○ Fixed sized arrays
○ Dynamic arrays
○ Structs
○ Maps, e.g.: mapping (address => uint) public balances

● Datatypes can be nested, but not recursive
● Fixed depth: no null, defaults instead
● “memory” (local variables): references, aliases, basically a heap
● “storage” (persistent memory): value semantics, no references, no aliasing

KeY for Smart Contracts: Logic and Calculus

● Datatypes:
○ fixed sized arrays
○ dynamic arrays
○ structs
○ maps, e.g.: mapping (address => uint) public balances

● Datatypes can be nested, but not recursive
● Fixed depth: no null, defaults instead
● “memory” (local variables): references, aliases, basically a heap
● “storage” (persistent memory): value semantics, no references, no aliasing

Quest: we need back the flexible functions (from old KeY)
Why: explicit heap is in the way for modelling storage and maps

