50’/'1‘/0 n

Lightning Talks

What happened in KeY since the last Symposium?

KeY on GitHub (Alexander Weigl)

Assume and Assert (Florian Lanzinger)

Free Invariants and Assignables (Florian Lanzinger)
Math modes (Mattias Ulbrich)

Proof Management (Wolfram Pfeifer)

Support of Final Fields (Mattias Ulbrich)

Redux Maker Tool (Lukas Gratz)

Support for Java 21 (Alexander Weigl)

Towards Language Independent Formulas (Daniel Drodt)
SolidiKeY (Wolfgang Ahrendt)

COXXNOOA WM~

—

KeY on Github

Alexander Weig|

(77 +)=

e \We moved to Github on Feb, 01.
e Main development and sources are now under:
https://github.com/keyproject/key

KeY on GitHub

Feel free to collaborate
Rights for merging can be granted

Gitlab instance remains

<> Code () Issues 323
G key ' Public
¥ main ~

O KeYProject / key

i1 Pullrequests 23 B3 Discussions

¥ 20 branches) 34 tags

9 WolframPfeifer Make settings dialog look nicer (#3179) ...

.github
.gitlab
.settings
deployment
gradle

key.core.example

Merge branch 'main' into weigl.
Update gitlab's template Bug.rr
Fix eclipse plugins after gradle
Move subprojects to top level

Ignore Javadoc warning on log¢

Merge remote-tracking branch

Home for Case Studies

Gathering of Case Studies

Archive, Reuse, Knowledge Base,
Proof Mining, ...

N+@=9

TimSort Public
Resources of the TimmSort Case Study

@ava %¥0 wo (1 §10 Updatedonjuni3

VerifyingIdentityHashMap Pubiic
Forked from m4ndeb2r/IM9906-2-VerifyingldentityHashMap
KeY verification case study in which we verify Java's IdentityHashMap with JML and KeY.

@®ava ¥1 o (o §90 Updated on Mar 25,2022

DualPivotQuickSort ' Public

@®java %¥0o o (o 1§90 Updatedonjun14

Please contribute your
KeY Case Studies

Assume and Assert

Florian Lanzinger

Assume and assert statements for JML
1 public class AssertAssumeDemo {

public static int field;

@ ensures field == 42;
@x/
public static void foo() {

2
3
4
b /%@ public normal_behavior
6
7
8
9 //@ assume field == 40;

10 ++field;

11 //@ assert field == 41;
12 ++field;

13 }

Proof tree:

JML assume: Usage
(add field == 40to
antecedent)

JML assert
o Validity (add field == 41
to succedent)
o Usage (add field == 41
to antecedent)

Free Invariants and
Assignhables

Florian Lanzinger

Free specifications in JML

1 public class FreeSpecifications {

e Specifications that can be 2 public static int field;
used without being proven 3
are called “free” 4 /*¥@ public normal_behavior
Unsound if used incorrectly . @ requires_free field == 41;
But useful to encode (73 g*jnsures fleld == 42;
information from previously 8 public static void foo() {
done proofs / other tools / 9 ++field;
etc. 10 }

e OSofar: requires free, 11 /*¥@ public normal_behavior
ensures free, assume 12 @ ensures field == 42;

13 @x/

14 public static void bar() { foo(); }

Free specifications in JML

1 public class FreeSpecifications {

e Sofar: requires free, public static int field;

ensures_free, assume /%@ public normal_behavior

2
3
4
e New: assignable free 5 @ ensures true;
N 6 @ assignable \nothing;
7 @ assignable_free field; %/
8 void bar() { field = 42; }
3

10 /%@ public normal_behavior
11 @ ensures field == 21; %/
12- void foo() {

s field = 21;

14 bar();

15

Free specifications in JML

1 public class FreeSpecifications {

e OSofar: requires free,
ensures free, assume
e New: assignable free

e New: invariant free

int f; int g;
//@ invariant f > 0;
//@ invariant_free g > 0;

/%@ normal_behavior
@ ensures true; x/
FreeSpecifications() {
T =13 & = @;
}

/%@ normal_behavior
@ ensures \result > 0;
@x/
static int foo() {
return new FreeSpecifications().g;
}

Free specifications in JML

1 public class FreeSpecifications {
int f; int g;
//@ invariant f > 0;
//@ invariant_free g > 0;

e OSofar: requires free,
ensures free, assume
e New: assignable free

@ ensures true; %/
FreeSpecifications() {

5

4

5

6- /*¥@ normal_behavior
e New: invariant free 7
8
9

f=1; g = 03
10 }
11
12- /%@ normal_behavior
g @ requires \invariant_free_for(a);
14 @ ensures \result > 0;
156 @x%/
16 static int bar(FreeSpecifications a) {
17 return a.g;

18| }

Math Mode

Mattias Ulbrich

Mokt Semanhics in Spearcahoul

/@ oudusen \roukl == K'f_/{/-viala{eg sPecf
wt m (int x)f rdurn ><"'/f/' F (ot 4o TRLY

1 .
M‘SQ’ \ SPQC - b\%’\lﬂt{ W\a;(‘& .FOY \bla!r\{’
\spec — safe -make for it wio ovafbu
\SPQC.._ Ga\;o., _ mw?& for wnt w/ overflow

on cortraets of dasdes

(ln ‘ZKP\-C,SS\'OY\S Use- \J'a\:a,ma‘r&(--) Q{C)

Proof Management
Wolfram Pfeifer

Problems with verification projects (> 1 contract)

Source code, specification, proofs consistent?
Unproven (but used) contracts?

Proof settings compatible?

Dependency cycles?

KeY has a built-in proof management. However, it

only considers proofs loaded at the same time in the GUI.
only considers proofs in the same environment.
does not check settings.

L
o
L
e does not check all dependencies (model methods, dependency contracts, ...).

Proof Bundles

e Directory or zip file

e “File"—>"Save Proof as Bundle”
(single proof)

e Can be merged via
/pm merge b1 b2 ... output

bundle.zproof

- src // java classes (.java files only)
- A.java
- mypackage
- B.java
- C.java
- classpath // optional: may contain .jar files and

// directories with .java and/or .class files
- bootclasspath // optional: system classes from the Java class
replace the files shipped with KeY

// library,

// .key and .proof files (top level)

- rules.key

- project.key

- A[A::m1(int)].JML operation
- A[A::m2(int)].JML operation
- B[B::m1(int)].JML operation
- C[C::m1(int)].JML operation

contract.@.proof
contract.0.proof
contract.@.proof
contract.0.proof

Proof Management Tool

Post-hoc checks (CLI or GUI extension)
/pm check --settings --replay bundle

MissingProofsChecker
SettingsChecker
ReplayChecker
DependencyChecker

— outputs a command line or HTML report

Documentation: Readme in repo

Outlook: We can do better than post-hoc
checks — talk by Daniel Drodt

AAAAA

Support of Final Fields

Mattias Ulbrich

Expensive heaps

Reading fields from heaps can be expensive during reasoning (for the calculus)

Consider: class F { final int f; },
then by design of Java, f cannot change its value.

Yet, difficult to prove in KeY:

obj.flheap[other.x := 42] [anon (other.fp, h2)] [create(obj2)]
= obj.f

Solution: Final fields are not on the heap

Heap:

T T::select (Heap, Object, Field)
Heap store (Heap, Object, Field, Any)

Finals:

T T::final (Object, Field) ... do not care aboutthe heap

Challenge:

Finals may be changed in constructors (--> do not use this then)

Outlook: Heaps and Dependencies

Framing Properties are still a challenge in KeY

Dynamic Frames are a very flexible solution,
yet require a lot of reasoning not needed in 90% of the cases

Working on:

e Final fields (as shown)
e Exploit patterns in dynamic frame specifications to simplify obligations
e Combining ownership with dynamic frames

Redux MakerTool

Lukas Gratz
(Master Thesis by Fabian Bauer)

Status Quo in KeY

e Referenced classes must be loaded

o Otherwise KeY can't start
o Loading all sources takes too long

e Old StubMaker
o Eclipse plugin
o Input: Java sources < 1.6
o Output: Stubs

e Hand-written contracts

o Not exhaustive
o Some wrong/inconsistent

Goal

e Stand alone tool
e Support for modern Java
e Automatic contract generation

Result: ReduxMaker

e Implemented
o Easy to use, stand-alone tool
o Contract templates

e Input

o Java source or bytecode
e Output

o Stubs

o Assignable clauses
o Termination behavior (diverges or not)
o Contracts from the templates

e TODO
o Publish
o Explainin KeY’s wiki

Support for Java 21

Alexander Weig|

tate of Java-Support

KeY supports Java 1.4ish
Main Blocker:

Recoder Framework

for parsing and Java

JDK1.0 J2SE12
"Play area" was the
released on January 23, | codename which was given

to this form and was | released date 8th May,2000
released on 8th December,

Very first version was

1996, The principal
stable variant, JDK10.2,
is called Java 1.
JDK 11 was released on

February 19,199;

1998.Its real expa

JAVA SE 8

Was released on date
18th March 2014
Language level support
for lambda expressions

Included:

J2SE13
Was glven a codename
“KESTREL" and was.

and contains additions like

HotSpot, JVM included,
Java Naming and Directory
Interface

nsion

J2SE 1.4
Was given the codename
“Merlin" and was released
on date 6th February,2002
and contains additions like
Library improvements,
Regular expressions
modelled after Perl regular
JAVA SE expressions
Was glven the codename
“Dolphin” and was released
on date 7th July 201
Added small language

and default methods and changes including strings In
anew date and time API switch. The JVM was awrn a J2SE 50
inspired by Joda Time. extended with support for database supervisor and Was glven the

JAVA SE9
Was released on date: 21st
September 2017

Project Jigsaw: designing
and Implementing a
standard, module system

for the Java SE platform, JAVA SE

and to apply that system to Released Date- 25th
the platform itself and the September,2018
JOK. contains additions like

Dynamic class-file
constants, Epsllon: a

JAVA SE 10

dynamic languages.

encourages the
utilization of scripting

codename “Tiger" and
was released on 30th
September,2004

no-op garbage collector,
Local-variable syntax for

originally numbered as
1.5 which Is still used as
ts Internal version.
Added several new
language features such
as for-each loop

JAVA SE 12
Released Date- 19th
Macrh,2019 contains
additions like
Shenandoah: A
Low-Pause-Time
Garbage Collector

Released Date- 20th lambda parameters,
March contains additions Low-overhead heap
like Additional Unicode profiling]
language-tag

extensions, Root
certificates, Thread-local
handshakes, Heap
allocation on alternative
memory devices

Microbenchmark Suite,
Switch Expressions
(Preview), JVM
Constants APl

Autumn 2023
Java 21

JavaParser

Fork

P

O javaparser/javaparser

Fork

> JPRE

() wadoon/key-javaparser

)

) jmitoolkit/jmiparser

Parser, AST and Name Resolution for
ProofJava and SchemaJava
Support for: method frame, loop scopes,

schema variables, transaction commands,
meta-constructs, #typeof, ...

State of integration

99.9% key.core
<20% run-all-proofs

Towards Language

Independent Formulas
Daniel Drodt

Making KeY Language Independent

36 public interface Term

. . 37 tends SVSubstitute,
e KeY is designed for Java . P g e
e We aim to make it usable for many s : BalRR=RoOFEaDESEELENaney
languages 41 (%
. 42 * The Java block at top level.
e First task: Terms 43 %/
o Current term structure is designed for Java 2‘5* : JavaBlock javaBlock();

o Interfaces and matching logic is not
language-independent

o We want to redesign terms, formulas and
language elements

If you have comments/input, please reach out!

SolidikeY

Wolfgang Ahrendt

KeY for Smart Contracts: Logic and Calculus

e Datatypes:

o Fixed sized arrays

o Dynamic arrays

o Structs

o Maps, e.g.. mapping (address => uint) public balances

Datatypes can be nested, but not recursive

Fixed depth: no null, defaults instead

“memory” (local variables): references, aliases, basically a heap

“storage” (persistent memory): value semantics, no references, no aliasing

KeY for Smart Contracts: Logic and Calculus

Datatypes:

o fixed sized arrays

o dynamic arrays

o structs

O maps, e.g.. mapping (address => uint) public balances

Datatypes can be nested, but not recursive

Fixed depth: no null, defaults instead

“memory” (local variables): references, aliases, basically a heap

“storage” (persistent memory): value semantics, no references, no aliasing

Quest: we need back the flexible functions (from old KeY)
Why: explicit heap is in the way for modelling storage and maps

