
www.kit.eduKIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Improved Correctness-by-Construction Engineering through Successive Levels of
Correctness Guarantees

KeY Symposium 2023
8 August 2023, Bergen
Tabea Bordis, Tobias Runge, Fynn Demmler, and Ina Schaefer

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.20232

Motivation

Specification

Refinement
Step

Check Side
Conditions

Correct ImplementationPo
st

-h
oc

 V
er

ifi
ca

tio
n

C
or

re
ct

ne
ss

-b
y-

C
on

st
ru

ct
io

n
(C

bC
)

Implementation Specification

Verification

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.20233

Correctness-by-Construction – Linear Search

{P} S {Q}

P := A != null
Q := i >= 0 A[i] = x
M := !app(A, x, i+1, A.length)

Refinement Rules
• Assignment
• Composition
• Repetition
• Selection
• Method call
• …

{P} S1 {M} & {M} S2 {Q}

Composition{P} i := A.length - 1 {M} {M} do[I, V] A[i] != x rS od {Q}

{I & G} i := i - 1 {I}

A

0 i+1

x could be here x not here

A.length

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

IDE for Correctness-by-Construction

Textual and graphical editor
Meta-model with EMF
Interchangable

KeY* used to verify the refinements

Available at https://github.com/KIT-TVA/CorC

CorC – Tool Support for CbC

*Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book: From Theory to Practice.
Springer (2016)

09.08.20234

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.20235

Why CbC?

P S Q

x=y

x=y

1
100

10000
1000000

N
um

be
r o

f P
ro

of

N
od

es
 (l

og
ar

ith
m

ic

sc
al

e)

CbC Proof-Nodes PhV Proof-Nodes

[Runge et al., 2019] T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. G. Kourie, B. W. Watson: Tool Support for Correctness-by-
Construction, Proc. of the International Conference on Fundamental Approaches to Software Engineering (FASE), Springer, 2019.

[R
un

ge
 e

t a
l.

20
19

]

Specification

Refinement
Step

Check Side
Conditions

Correct ImplementationC
or

re
ct

ne
ss

-b
y-

C
on

st
ru

ct
io

n
(C

bC
) Think first rather than hacking
things into correctness
Errors detected earlier
Reduced proof complexity

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.20236

Difficulty of Verification

P S Q

x=y

x=y

Problem: Finding
the defect if the
proof is not closable

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Tool support for CbC with any knowledge in formal verification
Use 3 concepts from software engineering
1. Better error messages (KeY exception handling)
2. Generation of test cases
3. Counter examples

3 stages of guarantees
1. Specified
2. Tested
3. Verified

09.08.20237

Vision

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Supported by error messages

09.08.20238

First Level: Specified

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Supported by error messages

09.08.20239

First Level: Specified

---------------Triggered verification ---------------
Verify Pre -> {Statement} Post
A PosConvertException occured.
This happens when the function, method, or field declaration does not correspond
with its use in the CorC editor.
Could not resolve FieldReference "b" @3/21 in
FILE:C:\Users\chris\Documents__Programmierprojekte\Java\CorC\de.tu_bs.cs.isf.co
rc.examples\src\Helper.java
To fix this error, try:
> Check the class and the function's definition, especially the parameters
> Check your usage of the function in the CorC editor
> Consider using a classpath if this is a classtype that cannot be resolved
---------------Verification completed ---------------91ms

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.202310

FOL Predicate Manager

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.202311

Second Level: Tested

• Precondition for test
input

• Postcondition for
assertions

• Generate and execute
testcase

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Generate test with AAA-principle
(Arrange, Act, Assert)

Without precondition
Default values for primitive types

With precondition
Using SMT-Solver to find an assignment
that fulfills the precondition

Postcondition is used as test oracle

09.08.202312

Test Input and Assertions

@Test
Public void exampleTest(ITestContext context)
{

//Arrange
generatedClass = new GeneratedClass();
int x = 0;

//Act
int result = generatedClass.example(x);

//Assert
Assert.assertTrue(x%2 == result);

}

Tobias Runge – CbC through Successive Levels of Correctness Guarantees09.08.202313

Example of a Test Report

A[i]==x

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

And supported by counter example generation
Proof goal:
𝑃𝑃→{S}Q

P:= n==0
S:= f=0;

Values:
n:=0
f:=0

Is satisfiable?
Q := f==frac(n)

Inserted:
0==1

Conclusion:
f must be 1

09.08.202314

Third Level: Verified

Verification with

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

F

09.08.202315

Update of the Counter Example Output

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Research question:
Do the participants perceive the new features as a useful extension to CorC?

Two user studies with five experts each
Debug CorC programs with and without the usabiliy features
Interview regarding the benefits of the new features

09.08.202316

Expert Study

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Error messages
All participants found it useful
Especially the rust-like component of giving troubleshooting tips

Test case generation
All participants found it useful
Final test report is readable
“Concrete values facilitate error detection”

09.08.202317

Summary of the Study Results

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

Counter examples
Most agree that the counterexample generation is a useful addition
“The counter example syntax is hard-to-read and hinders
comprehension”

09.08.202318

Summary of the Study Results

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

How many bugs can we find with test cases?

09.08.202319

ToDo: Mutation-based Evaluation

Specified
CorC
programs

Mutation of specification
and/or program Mutated

specified
CorC
programs

Test case generation and
execution Mutation

score of
killed
mutants

Tobias Runge – CbC through Successive Levels of Correctness Guarantees

CbC is a good way to create correct programs
But has entry threshold

Easier entry and better user experience through
Error messages
Test cases
Counter examples

09.08.202320

Conclusion

	Foliennummer 1
	Motivation
	Correctness-by-Construction – Linear Search
	CorC – Tool Support for CbC
	Why CbC?
	Difficulty of Verification
	Vision
	First Level: Specified
	First Level: Specified
	FOL Predicate Manager
	Second Level: Tested
	Test Input and Assertions
	Example of a Test Report
	Third Level: Verified
	Update of the Counter Example Output
	Expert Study
	Summary of the Study Results
	Summary of the Study Results
	ToDo: Mutation-based Evaluation
	Conclusion
	Third Level: Verified

