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Correctness-by-Construction – Linear Search

{P} S {Q}

P := A != null
Q := i >= 0  A[i] = x
M := !app(A, x, i+1, A.length)

Refinement Rules
• Assignment
• Composition
• Repetition
• Selection
• Method call
• …

{P} S1 {M} & {M} S2 {Q}

Composition{P} i := A.length - 1 {M} {M} do[I, V] A[i] != x  rS od {Q}

{I & G} i := i - 1 {I}

A

0 i+1

x could be here x not here

A.length
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IDE for Correctness-by-Construction

Textual and graphical editor
Meta-model with EMF
Interchangable

KeY* used to verify the refinements

Available at https://github.com/KIT-TVA/CorC

CorC – Tool Support for CbC

*Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: 
Deductive Software Verification - The KeY Book: From Theory to Practice. 
Springer (2016)

09.08.20234
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Why CbC?

P S Q

x=y

x=y

1
100

10000
1000000

N
um

be
r o

f P
ro

of
 

N
od

es
 (l

og
ar

ith
m

ic
 

sc
al

e)

CbC Proof-Nodes PhV Proof-Nodes

[Runge et al., 2019] T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. G. Kourie, B. W. Watson: Tool Support for Correctness-by-
Construction, Proc. of the International Conference on Fundamental Approaches to Software Engineering (FASE), Springer, 2019.
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Difficulty of Verification

P S Q

x=y

x=y

Problem: Finding
the defect if the
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Tool support for CbC with any knowledge in formal verification
Use 3 concepts from software engineering
1. Better error messages (KeY exception handling)
2. Generation of test cases
3. Counter examples

3 stages of guarantees
1. Specified
2. Tested
3. Verified

09.08.20237

Vision
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Supported by error messages

09.08.20238

First Level: Specified
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Supported by error messages

09.08.20239

First Level: Specified

---------------Triggered verification ---------------
Verify Pre -> {Statement} Post
A PosConvertException occured.
This happens when the function, method, or field declaration does not correspond 
with its use in the CorC editor.
Could not resolve FieldReference "b" @3/21 in 
FILE:C:\Users\chris\Documents\__Programmierprojekte\Java\CorC\de.tu_bs.cs.isf.co
rc.examples\src\Helper.java
To fix this error, try:
> Check the class and the function's definition, especially the parameters
> Check your usage of the function in the CorC editor
> Consider using a classpath if this is a classtype that cannot be resolved
---------------Verification completed ---------------91ms
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FOL Predicate Manager
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Second Level: Tested

• Precondition for test
input

• Postcondition for
assertions

• Generate and execute
testcase
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Generate test with AAA-principle 
(Arrange, Act, Assert)

Without precondition
Default values for primitive types

With precondition
Using SMT-Solver to find an assignment 
that fulfills the precondition

Postcondition is used as test oracle

09.08.202312

Test Input and Assertions

@Test
Public void exampleTest(ITestContext context) 
{

//Arrange
generatedClass = new GeneratedClass();
int x = 0;

//Act
int result = generatedClass.example(x);

//Assert
Assert.assertTrue(x%2 == result);

}
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Example of a Test Report

A[i]==x
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And supported by counter example generation
Proof goal:
𝑃𝑃→{S}Q

P:= n==0
S:= f=0;

Values:
n:=0
f:=0

Is satisfiable?
Q := f==frac(n)

Inserted:
0==1

Conclusion:
f must be 1

09.08.202314

Third Level: Verified

Verification with
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F 

09.08.202315

Update of the Counter Example Output
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Research question:
Do the participants perceive the new features as a useful extension to CorC?

Two user studies with five experts each
Debug CorC programs with and without the usabiliy features
Interview regarding the benefits of the new features

09.08.202316

Expert Study
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Error messages
All participants found it useful
Especially the rust-like component of giving troubleshooting tips

Test case generation
All participants found it useful
Final test report is readable
“Concrete values facilitate error detection”

09.08.202317

Summary of the Study Results
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Counter examples
Most agree that the counterexample generation is a useful addition
“The counter example syntax is hard-to-read and hinders 
comprehension”

09.08.202318

Summary of the Study Results
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How many bugs can we find with test cases?

09.08.202319

ToDo: Mutation-based Evaluation

Specified
CorC
programs

Mutation of specification
and/or program Mutated

specified
CorC
programs

Test case generation and
execution Mutation 

score of
killed
mutants
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CbC is a good way to create correct programs
But has entry threshold

Easier entry and better user experience through
Error messages
Test cases
Counter examples

09.08.202320

Conclusion
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