
Quantifying Software Correctness By Combining
Architecture Modeling and Formal Program Analysis
KeY Symposium 2023
Florian Lanzinger, Christian Martin, Frederik Reiche, Samuel Teuber, Robert Heinrich, and Alexander Weigl | 2023-08-10

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:

Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios

2/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Verification of Large Software Systems



Architectural
Model

Critical
RegionsSoftware

Verifica-
tion

Test

User

Review & Estimation

Modeling
Architecture

Probabilistic
Model

Reliability
Estimation

Model
Checker

3/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

The Quac Approach



WindTurbine

produce(int windSpeed);

Network

int load;

addLoad(int n);
useLoad(int n);

Consumer

consume(int demand);

windSpeed ∼ U (5,9);
demand ∼ U (0,4);
windTurbine.produce(windSpeed);
consumer.consume(demand);

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

load = load - n

Set

load = load - n

Set

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call

4/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Modeling Architecture and Behavior with Palladio



WindTurbine

produce(int windSpeed);

Network

int load;

addLoad(int n);
useLoad(int n);

Consumer

consume(int demand);

windSpeed ∼ U (5,9);
demand ∼ U (0,4);
windTurbine.produce(windSpeed);
consumer.consume(demand);

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

load = load - n

Set

load = load - n

Set

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call

4/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Modeling Architecture and Behavior with Palladio



WindTurbine

produce(int windSpeed);

Network

int load;

addLoad(int n);
useLoad(int n);

Consumer

consume(int demand);

windSpeed ∼ U (5,9);
demand ∼ U (0,4);
windTurbine.produce(windSpeed);
consumer.consume(demand);

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

load = load - n

Set

load = load - n

Set

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call

4/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Modeling Architecture and Behavior with Palladio



//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

load = load - n

Set

load = load - n

Set

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call

5/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Implementing and Specifying Source Code



//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Open goals:

produce ↦ ∅
addLoad ↦ ∅
useLoad ↦ {𝜙 ⟹ 𝜓, 0 ≤ 𝑛 + self.load}
consume ↦ ∅

6/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Analyzing Source Code with KeY



//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Open goals:

produce ↦ false

addLoad ↦ false

useLoad ↦ ⋁
𝑖
¬𝜙𝑖 ∨⋁

𝑗
𝜓𝑗 ∨ 0 ≤ 𝑛 + self.load

consume ↦ false

6/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Analyzing Source Code with KeY



//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Negated open goals:

produce ↦ false

addLoad ↦ false

useLoad ↦ ⋀
𝑖
𝜙𝑖 ∧⋀

𝑗
¬𝜓𝑗 ∧ ¬0 ≤ 𝑛 + self.load

consume ↦ false

6/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Analyzing Source Code with KeY



//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Projected negated open goals:

produce ↦ false

addLoad ↦ false

useLoad ↦ 0 > 𝑛 + self.load
consume ↦ false

6/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Analyzing Source Code with KeY



//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Critical regions:

produce ↦ false

addLoad ↦ false

useLoad ↦ 0 > 𝑛 + self.load
consume ↦ false

6/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Analyzing Source Code with KeY



WindTurbine

produce(int windSpeed);

Network

int load;

addLoad(int n);
useLoad(int n);

Consumer

consume(int demand);

cruseLoad = 0 > 𝑛+loadcruseLoad = 0 > 𝑛+load

windSpeed ∼ U (5,9);
demand ∼ U (0,4);
windTurbine.produce(windSpeed);
consumer.consume(demand);

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

load = load - n

Set

load = load - n

Set

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call

7/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Extending Architecture Model with Analysis Results



int load;

fun usageProfile():
load = 0;
windSpeed ~ U(5,9);
demand ~ U(0,4);
produce(windSpeed));
consume(demand);

fun addLoad(int n):
if (false): critreg;
load = load + n;

fun useLoad(int n):
if (0 > n + load): critreg;
load = load - n;

fun produce(int windSpeed):
if (false): critreg;
if (windSpeed < 9):
addLoad(windSpeed * 3 / 4);

fun consume(int demand):
if (false): critreg;
if (true): useLoad(demand);

Failure probability:

Prob(error) = 1
5

8/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Transform Extended Architecture Model into Probabilistic
Error Model



9/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Demo



Works for example on the slides
For realistic programs, exact computation scales terribly

Number of code paths
More importantly: Number of random variables
Perhaps potential for optimization

Approximate model counting is feasible (run times mostly under 10 min.)

10/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Evaluation



Quantitative analysis of Safety
Find critical parameter regions with KeY
Transfer critical regions into Palladio
Compute probability of reachability

Depends on usage model

Outlook: Extension for Security
Attacker model:
Attacker can manipulate service calls partially with certain probabilities/costs
They use this to maximize the probability of entering a critical path

11/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Conclusion and Outlook



Quantitative analysis of Safety
Find critical parameter regions with KeY
Transfer critical regions into Palladio
Compute probability of reachability

Depends on usage model

Outlook: Extension for Security
Attacker model:
Attacker can manipulate service calls partially with certain probabilities/costs
They use this to maximize the probability of entering a critical path

11/11 2023-08-10 Quantifying Software Correctness By Combining, Architecture Modeling and Formal Program Analysis

Conclusion and Outlook


	Motivation
	Overview
	Demo
	Evaluation
	Conclusion and Outlook

