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Many components…

… with complex interactions…

… in a complex usage environment

Complete verification becomes impractical

Instead, we want to quantify correctness based on partial proofs

The Quac approach:
Modular analysis

Partial analysis
(of software and usage scenarios)

Probabilistic model of usage scenarios
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WindTurbine

produce(int windSpeed);

Network

int load;

addLoad(int n);
useLoad(int n);

Consumer

consume(int demand);

windSpeed ∼ U (5,9);
demand ∼ U (0,4);
windTurbine.produce(windSpeed);
consumer.consume(demand);

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

load = load - n

Set

load = load - n

Set

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call
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//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call
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Set
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Conditional service call

if(true)
network.useLoad(demand)
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//@ invariant Network::load >= 0;

WindTurbine::produce(int windSpeed) {
if (windSpeed < 9) {
debuglog("producing");
network.addLoad(windSpeed*3/4);

}
}

void Network::addLoad(int n) { load += n; }
void Network::useLoad(int n) { load -= n; }

void Consumer::consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Open goals:

produce ↦ ∅
addLoad ↦ ∅
useLoad ↦ {𝜙 ⟹ 𝜓, 0 ≤ 𝑛 + self.load}
consume ↦ ∅
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int load;

fun usageProfile():
load = 0;
windSpeed ~ U(5,9);
demand ~ U(0,4);
produce(windSpeed));
consume(demand);

fun addLoad(int n):
if (false): critreg;
load = load + n;

fun useLoad(int n):
if (0 > n + load): critreg;
load = load - n;

fun produce(int windSpeed):
if (false): critreg;
if (windSpeed < 9):
addLoad(windSpeed * 3 / 4);

fun consume(int demand):
if (false): critreg;
if (true): useLoad(demand);

Failure probability:

Prob(error) = 1
5
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Works for example on the slides
For realistic programs, exact computation scales terribly

Number of code paths
More importantly: Number of random variables
Perhaps potential for optimization

Approximate model counting is feasible (run times mostly under 10 min.)
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Quantitative analysis of Safety
Find critical parameter regions with KeY
Transfer critical regions into Palladio
Compute probability of reachability

Depends on usage model

Outlook: Extension for Security
Attacker model:
Attacker can manipulate service calls partially with certain probabilities/costs
They use this to maximize the probability of entering a critical path
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