
Dynamic Separation Logic

Frank de Boer, Hans-Dieter Hiep, Stijn de Gouw
hdh@cwi.nl

Leiden University (LIACS)
Centrum Wiskunde & Informatica (CWI)

the Netherlands

19th KeY Symposium 2023

KeY was our starting point
Our intuition came from years working with KeY:
I using dynamic logic
I formal basis for the heap update modality
I working with different heaps, anon. heap update
I dependency contracts, dynamic footprints

Separation logic is less expressive than KeY:
I simpler reasoning about the heap (local perspective)
I but has many techniques for automatic tool support

Opportunity to form a bridge between SL and KeY?
I integrate automated techniques (fragments of SL) in KeY
I increase KeY’s competitiveness to other verification systems

KeY was our starting point
Our intuition came from years working with KeY:
I using dynamic logic
I formal basis for the heap update modality
I working with different heaps, anon. heap update
I dependency contracts, dynamic footprints

Separation logic is less expressive than KeY:
I simpler reasoning about the heap (local perspective)
I but has many techniques for automatic tool support

Opportunity to form a bridge between SL and KeY?
I integrate automated techniques (fragments of SL) in KeY
I increase KeY’s competitiveness to other verification systems

KeY was our starting point
Our intuition came from years working with KeY:
I using dynamic logic
I formal basis for the heap update modality
I working with different heaps, anon. heap update
I dependency contracts, dynamic footprints

Separation logic is less expressive than KeY:
I simpler reasoning about the heap (local perspective)
I but has many techniques for automatic tool support

Opportunity to form a bridge between SL and KeY?
I integrate automated techniques (fragments of SL) in KeY
I increase KeY’s competitiveness to other verification systems

Overview

I First-order logic (FOL)

I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}

I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic

I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)

I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}

I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic

I this talk

Overview

I First-order logic (FOL)
I rich proof theory
I rich model theory
I semantic completeness

I Hoare’s logic {p}S{q}
I simple while programs
I rich program semantics
I relative completeness

I First-order dynamic logic
I modalities [S]q
I embedding p → [S]q
I expressivity ¬[S]¬q

I Separation logic (SL)
I separating conjunction ∗
I magic wand −∗
I aliasing, footprints

I Reynolds’ logic {p}S{q}
I pointer programs
I the frame rule
I relative completeness

I Dynamic separation logic
I this talk

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)

I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule

I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization

I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q

I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)

I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure

I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Contributions

I Reynolds’ logic has different axiomatizations such that
|= {p} S {q} if and only if ` {p} S {q}
(relative completeness: oracle, expressivity)
I Local axioms plus frame rule
I Global weakest precondition (WP) axiomatization
I These do not analyze the logical structure of p or q

I This talk introduces Dynamic Separation Logic (DSL)
|= {p} S {q} if and only if |= p → [S]q
I Axiomatization (useful for eliminating modalities)
I Weakest preconditions that do analyze logical structure
I Gracefulness :-)

I Leads to surprising equivalences in Separation Logic

Separation logic (syntax)
Signature:
standard signature of arithmetic: 0, 1,+,×,≤

Language:
p, q ::= b | (e ↪→ e ′) | p ∧ q | p → q | ∀xp | p ∗ q | p −∗ q

Derived notions:
I classical ∃x and ∨
I (e ↪→ −) as ∃x(e ↪→ x), and emp as ∀x(x 6↪→ −)
I (e 7→ e ′) as (e ↪→ e ′) ∧ (∀x .(x ↪→ −)→ x = e)

Examples
I (e 7→ e ′)→ (e ↪→ e ′) but (e ↪→ e ′) 6→ (e 7→ e ′)

I (e ↪→ e ′) ≡ (e 7→ e ′) ∗ true

Separation logic (syntax)
Signature:
standard signature of arithmetic: 0, 1,+,×,≤

Language:
p, q ::= b | (e ↪→ e ′) | p ∧ q | p → q | ∀xp | p ∗ q | p −∗ q

Derived notions:
I classical ∃x and ∨
I (e ↪→ −) as ∃x(e ↪→ x), and emp as ∀x(x 6↪→ −)
I (e 7→ e ′) as (e ↪→ e ′) ∧ (∀x .(x ↪→ −)→ x = e)

Examples
I (e 7→ e ′)→ (e ↪→ e ′) but (e ↪→ e ′) 6→ (e 7→ e ′)

I (e ↪→ e ′) ≡ (e 7→ e ′) ∗ true

Separation logic (syntax)
Signature:
standard signature of arithmetic: 0, 1,+,×,≤

Language:
p, q ::= b | (e ↪→ e ′) | p ∧ q | p → q | ∀xp | p ∗ q | p −∗ q

Derived notions:
I classical ∃x and ∨
I (e ↪→ −) as ∃x(e ↪→ x), and emp as ∀x(x 6↪→ −)
I (e 7→ e ′) as (e ↪→ e ′) ∧ (∀x .(x ↪→ −)→ x = e)

Examples
I (e 7→ e ′)→ (e ↪→ e ′) but (e ↪→ e ′) 6→ (e 7→ e ′)

I (e ↪→ e ′) ≡ (e 7→ e ′) ∗ true

Separation logic (semantics)
Interpretation:
h, s |= p, given heap h : Z ⇀fin Z and store s : V → Z

I Tarski-style, standard classical logic

I h, s |= (e ↪→ e ′) iff s(e) ∈ dom(h) and h(s(e)) = s(e ′)

I h, s |= p ∗ q iff h1, s |= p and h2, s |= q for some h1] h2 = h

I h, s |= p −∗ q iff h′, s |= p implies h] h′, s |= q for all h′ ⊥ h

Examples
I (x 7→ 1) ∧ (y 7→ 1) 6→ (x 7→ 1) ∗ (y 7→ 1)
I (x ↪→ 1) ∗ emp 6→ (x ↪→ 1) ∧ emp
I p ∗ (p −∗ q)→ q

Separation logic (semantics)
Interpretation:
h, s |= p, given heap h : Z ⇀fin Z and store s : V → Z

I Tarski-style, standard classical logic
I h, s |= (e ↪→ e ′) iff s(e) ∈ dom(h) and h(s(e)) = s(e ′)

I h, s |= p ∗ q iff h1, s |= p and h2, s |= q for some h1] h2 = h

I h, s |= p −∗ q iff h′, s |= p implies h] h′, s |= q for all h′ ⊥ h

Examples
I (x 7→ 1) ∧ (y 7→ 1) 6→ (x 7→ 1) ∗ (y 7→ 1)
I (x ↪→ 1) ∗ emp 6→ (x ↪→ 1) ∧ emp
I p ∗ (p −∗ q)→ q

Separation logic (semantics)
Interpretation:
h, s |= p, given heap h : Z ⇀fin Z and store s : V → Z

I Tarski-style, standard classical logic
I h, s |= (e ↪→ e ′) iff s(e) ∈ dom(h) and h(s(e)) = s(e ′)

I h, s |= p ∗ q iff h1, s |= p and h2, s |= q for some h1] h2 = h

I h, s |= p −∗ q iff h′, s |= p implies h] h′, s |= q for all h′ ⊥ h

Examples
I (x 7→ 1) ∧ (y 7→ 1) 6→ (x 7→ 1) ∗ (y 7→ 1)

I (x ↪→ 1) ∗ emp 6→ (x ↪→ 1) ∧ emp
I p ∗ (p −∗ q)→ q

Separation logic (semantics)
Interpretation:
h, s |= p, given heap h : Z ⇀fin Z and store s : V → Z

I Tarski-style, standard classical logic
I h, s |= (e ↪→ e ′) iff s(e) ∈ dom(h) and h(s(e)) = s(e ′)

I h, s |= p ∗ q iff h1, s |= p and h2, s |= q for some h1] h2 = h

I h, s |= p −∗ q iff h′, s |= p implies h] h′, s |= q for all h′ ⊥ h

Examples
I (x 7→ 1) ∧ (y 7→ 1) 6→ (x 7→ 1) ∗ (y 7→ 1)
I (x ↪→ 1) ∗ emp 6→ (x ↪→ 1) ∧ emp

I p ∗ (p −∗ q)→ q

Separation logic (semantics)
Interpretation:
h, s |= p, given heap h : Z ⇀fin Z and store s : V → Z

I Tarski-style, standard classical logic
I h, s |= (e ↪→ e ′) iff s(e) ∈ dom(h) and h(s(e)) = s(e ′)

I h, s |= p ∗ q iff h1, s |= p and h2, s |= q for some h1] h2 = h

I h, s |= p −∗ q iff h′, s |= p implies h] h′, s |= q for all h′ ⊥ h

Examples
I (x 7→ 1) ∧ (y 7→ 1) 6→ (x 7→ 1) ∗ (y 7→ 1)
I (x ↪→ 1) ∗ emp 6→ (x ↪→ 1) ∧ emp
I p ∗ (p −∗ q)→ q

Pointer programs
Programming language:
S ::= x := e | x := [e] | [x] := e | x := cons(e) | dispose(e) | . . .

Big-step operational semantics:
(S , h, s)⇒ (h′, s ′) or (S , h, s)⇒ fail or neither

I (x := [e], h, s)⇒ (h, s[x := h(s(e))]) if s(e) ∈ dom(h)

I (x := [e], h, s)⇒ fail if s(e) 6∈ dom(h)

I ([x] := e, h, s)⇒ (h[s(x) := s(e)], s) if s(e) ∈ dom(h)

I ([x] := e, h, s)⇒ fail if s(e) 6∈ dom(h)

I (x :=cons(e), h, s)⇒(h[n :=s(e)], s[x :=n]) where n 6∈dom(h)

I (dispose(x), h, s)⇒ (h[s(x) := ⊥], s) if s(e) ∈ dom(h)

I (dispose(x), h, s)⇒ fail if s(e) 6∈ dom(h)

Pointer programs
Programming language:
S ::= x := e | x := [e] | [x] := e | x := cons(e) | dispose(e) | . . .

Big-step operational semantics:
(S , h, s)⇒ (h′, s ′) or (S , h, s)⇒ fail or neither

I (x := [e], h, s)⇒ (h, s[x := h(s(e))]) if s(e) ∈ dom(h)

I (x := [e], h, s)⇒ fail if s(e) 6∈ dom(h)

I ([x] := e, h, s)⇒ (h[s(x) := s(e)], s) if s(e) ∈ dom(h)

I ([x] := e, h, s)⇒ fail if s(e) 6∈ dom(h)

I (x :=cons(e), h, s)⇒(h[n :=s(e)], s[x :=n]) where n 6∈dom(h)

I (dispose(x), h, s)⇒ (h[s(x) := ⊥], s) if s(e) ∈ dom(h)

I (dispose(x), h, s)⇒ fail if s(e) 6∈ dom(h)

Pointer programs
Programming language:
S ::= x := e | x := [e] | [x] := e | x := cons(e) | dispose(e) | . . .

Big-step operational semantics:
(S , h, s)⇒ (h′, s ′) or (S , h, s)⇒ fail or neither

I (x := [e], h, s)⇒ (h, s[x := h(s(e))]) if s(e) ∈ dom(h)

I (x := [e], h, s)⇒ fail if s(e) 6∈ dom(h)

I ([x] := e, h, s)⇒ (h[s(x) := s(e)], s) if s(e) ∈ dom(h)

I ([x] := e, h, s)⇒ fail if s(e) 6∈ dom(h)

I (x :=cons(e), h, s)⇒(h[n :=s(e)], s[x :=n]) where n 6∈dom(h)

I (dispose(x), h, s)⇒ (h[s(x) := ⊥], s) if s(e) ∈ dom(h)

I (dispose(x), h, s)⇒ fail if s(e) 6∈ dom(h)

Pointer programs
Programming language:
S ::= x := e | x := [e] | [x] := e | x := cons(e) | dispose(e) | . . .

Big-step operational semantics:
(S , h, s)⇒ (h′, s ′) or (S , h, s)⇒ fail or neither

I (x := [e], h, s)⇒ (h, s[x := h(s(e))]) if s(e) ∈ dom(h)

I (x := [e], h, s)⇒ fail if s(e) 6∈ dom(h)

I ([x] := e, h, s)⇒ (h[s(x) := s(e)], s) if s(e) ∈ dom(h)

I ([x] := e, h, s)⇒ fail if s(e) 6∈ dom(h)

I (x :=cons(e), h, s)⇒(h[n :=s(e)], s[x :=n]) where n 6∈dom(h)

I (dispose(x), h, s)⇒ (h[s(x) := ⊥], s) if s(e) ∈ dom(h)

I (dispose(x), h, s)⇒ fail if s(e) 6∈ dom(h)

Pointer programs
Programming language:
S ::= x := e | x := [e] | [x] := e | x := cons(e) | dispose(e) | . . .

Big-step operational semantics:
(S , h, s)⇒ (h′, s ′) or (S , h, s)⇒ fail or neither

I (x := [e], h, s)⇒ (h, s[x := h(s(e))]) if s(e) ∈ dom(h)

I (x := [e], h, s)⇒ fail if s(e) 6∈ dom(h)

I ([x] := e, h, s)⇒ (h[s(x) := s(e)], s) if s(e) ∈ dom(h)

I ([x] := e, h, s)⇒ fail if s(e) 6∈ dom(h)

I (x :=cons(e), h, s)⇒(h[n :=s(e)], s[x :=n]) where n 6∈dom(h)

I (dispose(x), h, s)⇒ (h[s(x) := ⊥], s) if s(e) ∈ dom(h)

I (dispose(x), h, s)⇒ fail if s(e) 6∈ dom(h)

Reynolds’ logic
Strong partial correctness axiomatization:
I all rules and axioms of Hoare’s logic

I {∃y .(e ↪→ y) ∧ p[y/x]} x := [e] {p}
I {(x 7→ −) ∗ ((x 7→ e) −∗ p)} [x] := e {p}
I {∀x .(x 7→ e) −∗ p} x := cons(e) {p} (x 6∈ FV (e))
I {(x 7→ −) ∗ p} dispose(x) {p}
I the frame rule

{p} S {q}
{p ∗ r} S {q ∗ r}

Soundness and relative completeness
(Bannister, Höfner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out

Reynolds’ logic
Strong partial correctness axiomatization:
I all rules and axioms of Hoare’s logic

I {∃y .(e ↪→ y) ∧ p[y/x]} x := [e] {p}
I {(x 7→ −) ∗ ((x 7→ e) −∗ p)} [x] := e {p}
I {∀x .(x 7→ e) −∗ p} x := cons(e) {p} (x 6∈ FV (e))
I {(x 7→ −) ∗ p} dispose(x) {p}

I the frame rule
{p} S {q}

{p ∗ r} S {q ∗ r}

Soundness and relative completeness
(Bannister, Höfner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out

Reynolds’ logic
Strong partial correctness axiomatization:
I all rules and axioms of Hoare’s logic

I {∃y .(e ↪→ y) ∧ p[y/x]} x := [e] {p}
I {(x 7→ −) ∗ ((x 7→ e) −∗ p)} [x] := e {p}
I {∀x .(x 7→ e) −∗ p} x := cons(e) {p} (x 6∈ FV (e))
I {(x 7→ −) ∗ p} dispose(x) {p}
I the frame rule

{p} S {q}
{p ∗ r} S {q ∗ r}

Soundness and relative completeness
(Bannister, Höfner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out

Reynolds’ logic
Strong partial correctness axiomatization:
I all rules and axioms of Hoare’s logic

I {∃y .(e ↪→ y) ∧ p[y/x]} x := [e] {p}
I {(x 7→ −) ∗ ((x 7→ e) −∗ p)} [x] := e {p}
I {∀x .(x 7→ e) −∗ p} x := cons(e) {p} (x 6∈ FV (e))
I {(x 7→ −) ∗ p} dispose(x) {p}
I the frame rule

{p} S {q}
{p ∗ r} S {q ∗ r}

Soundness and relative completeness
(Bannister, Höfner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out

Reynolds’ logic
Strong partial correctness axiomatization:
I all rules and axioms of Hoare’s logic

I {∃y .(e ↪→ y) ∧ p[y/x]} x := [e] {p}
I {(x 7→ −) ∗ ((x 7→ e) −∗ p)} [x] := e {p}
I {∀x .(x 7→ e) −∗ p} x := cons(e) {p} (x 6∈ FV (e))
I {(x 7→ −) ∗ p} dispose(x) {p}
I the frame rule

{p} S {q}
{p ∗ r} S {q ∗ r}

Soundness and relative completeness
(Bannister, Höfner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out

Dynamic separation logic
Language:
p, q ::= b | (e ↪→ e ′) | p ∧ q | p → q | ∀xp | p ∗ q | p −∗ q | [S]p

Interpretation:
I h, s |= [S]p iff (S , h, s) 6⇒ fail and

(S , h, s)⇒ (h′, s ′) implies h′, s ′ |= p

Fact
I |= {[S]q} S {q}
I |= {p} S {q} implies p → [S]q

Question. Can we analyze [S]p compositionally in p?
Answer. Yes, using equivalence axioms, allowing rewriting

Dynamic separation logic
Language:
p, q ::= b | (e ↪→ e ′) | p ∧ q | p → q | ∀xp | p ∗ q | p −∗ q | [S]p

Interpretation:
I h, s |= [S]p iff (S , h, s) 6⇒ fail and

(S , h, s)⇒ (h′, s ′) implies h′, s ′ |= p

Fact
I |= {[S]q} S {q}
I |= {p} S {q} implies p → [S]q

Question. Can we analyze [S]p compositionally in p?

Answer. Yes, using equivalence axioms, allowing rewriting

Dynamic separation logic
Language:
p, q ::= b | (e ↪→ e ′) | p ∧ q | p → q | ∀xp | p ∗ q | p −∗ q | [S]p

Interpretation:
I h, s |= [S]p iff (S , h, s) 6⇒ fail and

(S , h, s)⇒ (h′, s ′) implies h′, s ′ |= p

Fact
I |= {[S]q} S {q}
I |= {p} S {q} implies p → [S]q

Question. Can we analyze [S]p compositionally in p?
Answer. Yes, using equivalence axioms, allowing rewriting

Axiomatization
Introduce pseudo-instructions:
I (〈x〉 := e, h, s)⇒ (h[s(x) := s(e)], s) unconditionally
I (〈x〉 := ⊥, h, s)⇒ (h[s(x) := ⊥], s) unconditionally

[[x] := e]p ≡ (x ↪→ −) ∧ [〈x〉 := e]p (E6)
[x := cons(e)]p ≡ ∀x .(x 6↪→ −)→ [〈x〉 := e]p (E7)
[dispose(x)]p ≡ (x ↪→ −) ∧ [〈x〉 := ⊥]p (E8)

[〈x〉 := e]b ≡ b (E9)
[〈x〉 := e](e ′ ↪→e ′′) ≡ (x=e ′ ∧ e ′′=e) ∨ (x 6=e ′ ∧ e ′ ↪→e ′′) (E10)
[〈x〉 := e](p ∗ q) ≡ ([〈x〉 := e]p ∗ q′) ∨ (p′ ∗ [〈x〉 := e]q) (E11)

[〈x〉 := e](p −∗ q) ≡ p′ −∗ [〈x〉 := e]q (E12)

where p′ = p ∧ (x 6↪→ −) and q′ = q ∧ (x 6↪→ −) and
[〈x〉 := e] works like substitution for logical connectives (E1-3)

Axiomatization
Introduce pseudo-instructions:
I (〈x〉 := e, h, s)⇒ (h[s(x) := s(e)], s) unconditionally
I (〈x〉 := ⊥, h, s)⇒ (h[s(x) := ⊥], s) unconditionally

[[x] := e]p ≡ (x ↪→ −) ∧ [〈x〉 := e]p (E6)
[x := cons(e)]p ≡ ∀x .(x 6↪→ −)→ [〈x〉 := e]p (E7)
[dispose(x)]p ≡ (x ↪→ −) ∧ [〈x〉 := ⊥]p (E8)

[〈x〉 := e]b ≡ b (E9)
[〈x〉 := e](e ′ ↪→e ′′) ≡ (x=e ′ ∧ e ′′=e) ∨ (x 6=e ′ ∧ e ′ ↪→e ′′) (E10)
[〈x〉 := e](p ∗ q) ≡ ([〈x〉 := e]p ∗ q′) ∨ (p′ ∗ [〈x〉 := e]q) (E11)

[〈x〉 := e](p −∗ q) ≡ p′ −∗ [〈x〉 := e]q (E12)

where p′ = p ∧ (x 6↪→ −) and q′ = q ∧ (x 6↪→ −) and
[〈x〉 := e] works like substitution for logical connectives (E1-3)

Axiomatization
Introduce pseudo-instructions:
I (〈x〉 := e, h, s)⇒ (h[s(x) := s(e)], s) unconditionally
I (〈x〉 := ⊥, h, s)⇒ (h[s(x) := ⊥], s) unconditionally

[[x] := e]p ≡ (x ↪→ −) ∧ [〈x〉 := e]p (E6)
[x := cons(e)]p ≡ ∀x .(x 6↪→ −)→ [〈x〉 := e]p (E7)
[dispose(x)]p ≡ (x ↪→ −) ∧ [〈x〉 := ⊥]p (E8)

[〈x〉 := e]b ≡ b (E9)
[〈x〉 := e](e ′ ↪→e ′′) ≡ (x=e ′ ∧ e ′′=e) ∨ (x 6=e ′ ∧ e ′ ↪→e ′′) (E10)
[〈x〉 := e](p ∗ q) ≡ ([〈x〉 := e]p ∗ q′) ∨ (p′ ∗ [〈x〉 := e]q) (E11)

[〈x〉 := e](p −∗ q) ≡ p′ −∗ [〈x〉 := e]q (E12)

where p′ = p ∧ (x 6↪→ −) and q′ = q ∧ (x 6↪→ −) and
[〈x〉 := e] works like substitution for logical connectives (E1-3)

Axiomatization
Introduce pseudo-instructions:
I (〈x〉 := e, h, s)⇒ (h[s(x) := s(e)], s) unconditionally
I (〈x〉 := ⊥, h, s)⇒ (h[s(x) := ⊥], s) unconditionally

[[x] := e]p ≡ (x ↪→ −) ∧ [〈x〉 := e]p (E6)
[x := cons(e)]p ≡ ∀x .(x 6↪→ −)→ [〈x〉 := e]p (E7)
[dispose(x)]p ≡ (x ↪→ −) ∧ [〈x〉 := ⊥]p (E8)

[〈x〉 := ⊥]b ≡ b (E13)
[〈x〉 := ⊥](e ↪→ e ′) ≡ (x 6= e ∧ (e ↪→ e ′)) (E14)
[〈x〉 := ⊥](p ∗ q) ≡ [〈x〉 := ⊥]p ∗ [〈x〉 := ⊥]q (E15)

[〈x〉 := ⊥](p −∗ q) ≡ (p′ −∗ [〈x〉 := ⊥]q) ∧
∀y .[〈x〉 := y]p −∗ [〈x〉 := y]q (E16)

where p′ = p ∧ (x 6↪→ −) and [〈x〉 := ⊥] works for ∧,→,∀ (E1-3)

Surprising impact

(x 7→ −) ∗ ((x 7→ 0) −∗ (y ↪→ z))

≡

[[x] := 0](y ↪→ z)

≡

(x ↪→ −) ∧ ((y = x ∧ z = 0) ∨ (y 6= x ∧ y ↪→ z))

I Bug in CVC4-SL, not equivalent in CVC5-SL (incomplete)
I No proof known in Iris, needs more axioms (incomplete)
I No proof known in VerCors / Viper (incomplete)
I Verifast? (I did not try yet)

Surprising impact

(x 7→ −) ∗ ((x 7→ 0) −∗ (y ↪→ z))

≡

[[x] := 0](y ↪→ z)

≡

(x ↪→ −) ∧ ((y = x ∧ z = 0) ∨ (y 6= x ∧ y ↪→ z))

I Bug in CVC4-SL, not equivalent in CVC5-SL (incomplete)
I No proof known in Iris, needs more axioms (incomplete)
I No proof known in VerCors / Viper (incomplete)
I Verifast? (I did not try yet)

Surprising impact

(x 7→ −) ∗ ((x 7→ 0) −∗ (y ↪→ z))

≡

[[x] := 0](y ↪→ z)

≡

(x ↪→ −) ∧ ((y = x ∧ z = 0) ∨ (y 6= x ∧ y ↪→ z))

I Bug in CVC4-SL, not equivalent in CVC5-SL (incomplete)
I No proof known in Iris, needs more axioms (incomplete)
I No proof known in VerCors / Viper (incomplete)
I Verifast? (I did not try yet)

Surprising impact

(x 7→ −) ∗ ((x 7→ 0) −∗ (y ↪→ z))

≡

[[x] := 0](y ↪→ z)

≡

(x ↪→ −) ∧ ((y = x ∧ z = 0) ∨ (y 6= x ∧ y ↪→ z))

I Bug in CVC4-SL, not equivalent in CVC5-SL (incomplete)
I No proof known in Iris, needs more axioms (incomplete)
I No proof known in VerCors / Viper (incomplete)
I Verifast? (I did not try yet)

Contributions
I This talk has introduced Dynamic Separation Logic (DSL)

I Axiomatization (useful for eliminating modalities)
I Novel weakest preconditions axiomatization
I To appear: paper in MFPS’23
I Robust: novel strongest postcondition axiomatization
I Robust: WP and SP for intuitionistic separation logic

I The Logic of Separation Logic (paper in TABLEAUX’23)
I Novel model theory for separation logic (general models)
I Sound and complete proof theory (Henkin-like models)
I Sound and complete program logic (memory models)

I PhD thesis: New Foundations for Separation Logic

I Future work: use Dynamic Separation Logic in KeY 3.0?

Contributions
I This talk has introduced Dynamic Separation Logic (DSL)

I Axiomatization (useful for eliminating modalities)
I Novel weakest preconditions axiomatization
I To appear: paper in MFPS’23
I Robust: novel strongest postcondition axiomatization
I Robust: WP and SP for intuitionistic separation logic

I The Logic of Separation Logic (paper in TABLEAUX’23)
I Novel model theory for separation logic (general models)
I Sound and complete proof theory (Henkin-like models)
I Sound and complete program logic (memory models)

I PhD thesis: New Foundations for Separation Logic

I Future work: use Dynamic Separation Logic in KeY 3.0?

Contributions
I This talk has introduced Dynamic Separation Logic (DSL)

I Axiomatization (useful for eliminating modalities)
I Novel weakest preconditions axiomatization
I To appear: paper in MFPS’23
I Robust: novel strongest postcondition axiomatization
I Robust: WP and SP for intuitionistic separation logic

I The Logic of Separation Logic (paper in TABLEAUX’23)
I Novel model theory for separation logic (general models)
I Sound and complete proof theory (Henkin-like models)
I Sound and complete program logic (memory models)

I PhD thesis: New Foundations for Separation Logic

I Future work: use Dynamic Separation Logic in KeY 3.0?

Contributions
I This talk has introduced Dynamic Separation Logic (DSL)

I Axiomatization (useful for eliminating modalities)
I Novel weakest preconditions axiomatization
I To appear: paper in MFPS’23
I Robust: novel strongest postcondition axiomatization
I Robust: WP and SP for intuitionistic separation logic

I The Logic of Separation Logic (paper in TABLEAUX’23)
I Novel model theory for separation logic (general models)
I Sound and complete proof theory (Henkin-like models)
I Sound and complete program logic (memory models)

I PhD thesis: New Foundations for Separation Logic

I Future work: use Dynamic Separation Logic in KeY 3.0?

