Dynamic Separation Logic

Frank de Boer, Hans-Dieter Hiep, Stijn de Gouw
hdh@cwi.nl

Leiden University (LIACS)
Centrum Wiskunde & Informatica (CWI)
the Netherlands

19th KeY Symposium 2023

KeY was our starting point

Our intuition came from years working with KeY:
» using dynamic logic
» formal basis for the heap update modality
» working with different heaps, anon. heap update

» dependency contracts, dynamic footprints

KeY was our starting point

Our intuition came from years working with KeY:
» using dynamic logic
» formal basis for the heap update modality
» working with different heaps, anon. heap update

» dependency contracts, dynamic footprints

Separation logic is less expressive than KeY:
» simpler reasoning about the heap (local perspective)
» but has many techniques for automatic tool support

KeY was our starting point

Our intuition came from years working with KeY:
» using dynamic logic
» formal basis for the heap update modality
» working with different heaps, anon. heap update

» dependency contracts, dynamic footprints

Separation logic is less expressive than KeY:
» simpler reasoning about the heap (local perspective)
» but has many techniques for automatic tool support

Opportunity to form a bridge between SL and KeY?
> integrate automated techniques (fragments of SL) in KeY

> increase KeY's competitiveness to other verification systems

Overview

» First-order logic (FOL)

Overview

» First-order logic (FOL)
» rich proof theory
» rich model theory
» semantic completeness

Overview

» First-order logic (FOL)
» rich proof theory
» rich model theory
» semantic completeness

» Hoare's logic {p}S{q}

Overview

» First-order logic (FOL)
» rich proof theory
» rich model theory
» semantic completeness

» Hoare's logic {p}S{q}
» simple while programs
» rich program semantics
» relative completeness

Overview

» First-order logic (FOL)
» rich proof theory
» rich model theory
» semantic completeness

» Hoare's logic {p}S{q}
» simple while programs
» rich program semantics
» relative completeness

» First-order dynamic logic

Overview

» First-order logic (FOL)
» rich proof theory
» rich model theory
» semantic completeness

» Hoare's logic {p}S{q}
» simple while programs
» rich program semantics
» relative completeness

» First-order dynamic logic
> modalities [S]q
» embedding p — [S]q
> expressivity —[S]—q

Overview

» First-order logic (FOL) » Separation logic (SL)
» rich proof theory
» rich model theory
» semantic completeness

» Hoare's logic {p}S{q}
» simple while programs
» rich program semantics
» relative completeness

» First-order dynamic logic
> modalities [S]q
» embedding p — [S]q
> expressivity —[S]—q

Overview

» First-order logic (FOL) » Separation logic (SL)
» rich proof theory P separating conjunction
» rich model theory » magic wand —x
» semantic completeness » aliasing, footprints

» Hoare's logic {p}S{q}
» simple while programs
» rich program semantics
» relative completeness

» First-order dynamic logic
> modalities [S]q
» embedding p — [S]q
> expressivity —[S]—q

Overview

» First-order logic (FOL) » Separation logic (SL)
» rich proof theory P separating conjunction
» rich model theory » magic wand —x
» semantic completeness » aliasing, footprints

» Hoare's logic {p}S{q} » Reynolds’ logic {p}S{q}

» simple while programs
» rich program semantics
» relative completeness

» First-order dynamic logic
> modalities [S]q
» embedding p — [S]q
> expressivity —[S]—q

Overview

» First-order logic (FOL) » Separation logic (SL)
» rich proof theory P separating conjunction
» rich model theory » magic wand —x
» semantic completeness » aliasing, footprints
» Hoare's logic {p}S{q} » Reynolds’ logic {p}S{q}
» simple while programs » pointer programs
» rich program semantics » the frame rule
» relative completeness » relative completeness

» First-order dynamic logic
> modalities [S]q
» embedding p — [S]q
> expressivity —[S]—q

Overview

» First-order logic (FOL) » Separation logic (SL)
» rich proof theory P separating conjunction
» rich model theory » magic wand —x
» semantic completeness » aliasing, footprints
» Hoare's logic {p}S{q} » Reynolds’ logic {p}S{q}
» simple while programs » pointer programs
» rich program semantics » the frame rule
» relative completeness » relative completeness
» First-order dynamic logic » Dynamic separation logic

> modalities [S]q
» embedding p — [S]q
> expressivity —[S]—q

Overview

» First-order logic (FOL) » Separation logic (SL)
» rich proof theory P separating conjunction
» rich model theory » magic wand —x
» semantic completeness » aliasing, footprints
» Hoare's logic {p}S{q} » Reynolds’ logic {p}S{q}
» simple while programs » pointer programs
» rich program semantics » the frame rule
» relative completeness » relative completeness
» First-order dynamic logic » Dynamic separation logic
> modalities [S]q > this talk

» embedding p — [S]q
> expressivity —[S]—q

Contributions

» Reynolds’ logic has different axiomatizations such that

E{p} S {q} ifand only if - {p} S {q}

(relative completeness: oracle, expressivity)

Contributions

» Reynolds’ logic has different axiomatizations such that

E{p} S {q} ifand only if - {p} S {q}

(relative completeness: oracle, expressivity)
» Local axioms plus frame rule

Contributions

» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)

» Local axioms plus frame rule
» Global weakest precondition (WP) axiomatization

Contributions

» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)
» Local axioms plus frame rule

» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

Contributions

» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)

» Local axioms plus frame rule
» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

» This talk introduces Dynamic Separation Logic (DSL)
= {p} S {q} if and only if = p — [S]q

Contributions

» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)

» Local axioms plus frame rule
» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

» This talk introduces Dynamic Separation Logic (DSL)
= {p} S {q} if and only if = p — [S]q

» Axiomatization (useful for eliminating modalities)

Contributions

» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)
» Local axioms plus frame rule

» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

» This talk introduces Dynamic Separation Logic (DSL)
= {p} S {q} if and only if = p — [S]q

» Axiomatization (useful for eliminating modalities)
» Weakest preconditions that do analyze logical structure

Contributions

» Reynolds’ logic has different axiomatizations such that

E{p} S {q} ifand only if - {p} S {q}

(relative completeness: oracle, expressivity)

» Local axioms plus frame rule
» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

» This talk introduces Dynamic Separation Logic (DSL)
= {p} S {q} if and only if = p — [S]q

» Axiomatization (useful for eliminating modalities)
» Weakest preconditions that do analyze logical structure
> Gracefulness :-)

Contributions

» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)
» Local axioms plus frame rule

» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

» This talk introduces Dynamic Separation Logic (DSL)
= {p} S {q} if and only if = p — [S]q

» Axiomatization (useful for eliminating modalities)
» Weakest preconditions that do analyze logical structure
> Gracefulness :-)

» Leads to surprising equivalences in Separation Logic

Separation logic (syntax)

Signature:
standard signature of arithmetic: 0,1, +, x, <

Language:
p,gi=b|(e=¢€)|pAglp—=q|Vxp|pxq|p—*q

Separation logic (syntax)

Signature:
standard signature of arithmetic: 0,1, +, x, <

Language:
p,gi=b|(e=¢€)|pAglp—=q|Vxp|pxq|p—*q

Derived notions:
> classical Ix and V
> (e — —) as Ix(e < x), and emp as Vx(x 4 —)
> (e—é)as(e—=)N (Vx.(x = —-) = x=c¢)

Separation logic (syntax)

Signature:
standard signature of arithmetic: 0,1, +, x, <

Language:
p,gi=b|(e=¢€)|pAglp—=q|Vxp|pxq|p—*q

Derived notions:
» classical 3x and Vv
> (e — —) as Ix(e < x), and emp as Vx(x 4 —)
> (e—é)as(e—=)N (Vx.(x = —-) = x=c¢)
Examples
> (e—é€)—(e—€)but (e —e€) A (e é€)

> (e > €)= (e €) * true

Separation logic (semantics)

Interpretation:
h,s = p, given heap h: Z —¢, Z and store s : V — Z

» Tarski-style, standard classical logic

Separation logic (semantics)

Interpretation:
h,s = p, given heap h: Z —¢, Z and store s : V — Z

» Tarski-style, standard classical logic

> h,s = (e =€) iff s(e) € dom(h) and h(s(e)) = s(€’)

» h,s = px*qiff hi,s = p and ha,s = q for some hy W hy = h
> hysEp—xqiff ;s = pimplies hW h,s = qgforall W L h

Separation logic (semantics)

Interpretation:
h,s = p, given heap h: Z —¢, Z and store s : V — Z

» Tarski-style, standard classical logic

> h,s = (e =€) iff s(e) € dom(h) and h(s(e)) = s(€’)

» h,s = px*qiff hi,s = p and ha,s = q for some hy W hy = h
> hysEp—xqiff ;s = pimplies hW h,s = qgforall W L h

Examples

> (x> DA(y—=1)AKx—=1Dx(y—1)

Separation logic (semantics)

Interpretation:
h,s = p, given heap h: Z —¢, Z and store s : V — Z

» Tarski-style, standard classical logic

> h,s = (e =€) iff s(e) € dom(h) and h(s(e)) = s(€’)

» h,s = px*qiff hi,s = p and ha,s = q for some hy W hy = h
> hysEp—xqiff ;s = pimplies hW h,s = qgforall W L h

Examples
> (x> DA(y—=1)AKx—=1Dx(y—1)
> (x = 1)xemp /4 (x — 1) Aemp

Separation logic (semantics)

Interpretation:
h,s = p, given heap h: Z —¢, Z and store s : V — Z

» Tarski-style, standard classical logic

> h,s = (e =€) iff s(e) € dom(h) and h(s(e)) = s(€’)

» h,s = px*qiff hi,s = p and ha,s = q for some hy W hy = h
> hysEp—xqiff ;s = pimplies hW h,s = qgforall W L h

Examples

> (x> DA(y—=1)AKx—=1Dx(y—1)
> (x = 1)xemp /4 (x — 1) Aemp

> px(p—*q)—q

Pointer programs

Programming language:
Si=x:=e|x:=]e]|[x] :=e| x:=cons(e) | dispose(e) | ...

Big-step operational semantics:
(S,h,s) = (W,s') or (S, h,s) = fail or neither

Pointer programs

Programming language:
Si=x:=e|x:=]e]|[x] :=e| x:=cons(e) | dispose(e) | ...

Big-step operational semantics:
(S,h,s) = (W,s') or (S, h,s) = fail or neither

(x :=[e], h,s) = (h,s[x := h(s(e))]) if s(e) € dom(h)

>
» (x:=[e], h,s) = fail if s(e) & dom(h)

Pointer programs

Programming language:
Si=x:=e|x:=]e]|[x] :=e| x:=cons(e) | dispose(e) | ...

Big-step operational semantics:
or (S, h,s) = fail or neither

(S,h,s)= (W,
> (x:=]e], h,s
> (x:=]e|, h,s
» ([x] :=e, h,s
» ([x] :=e, h,s

~— ~— ~— —

= (h, s[x := h(s(e))])

= fail

= (h[s(x) :=

= fail

s(e)l;s)

Pointer programs

Programming language:
Si=x:=e|x:=]e]|[x] :=e| x:=cons(e) | dispose(e) | ...

Big-step operational semantics:
(S,h,s) = (W,s') or (S, h,s) = fail or neither

» (x:=[e], h,s) = (h,s[x := h(s(e))]) if s(e) € dom(h)
» (x:=[e], h,s) = fail if s(e) & dom(h)
» ([x] :== e, h,s) = (h[s(x) :=s(e)],s) if s(e) € dom(h)
» ([x] :== e, h,s) = falil if s(e) & dom(h)
» (x:=cons(e), h,s)=-(h[n:=s(e)], s[x:=n]) where n¢Z dom(h)

Pointer programs

Programming language:
Si=x:=e|x:=]e]|[x] :=e| x:=cons(e) | dispose(e) | ...

Big-step operational semantics:
(S,h,s) = (W,s') or (S, h,s) = fail or neither

» (x:=[e], h,s) = (h,s[x := h(s(e))]) if s(e) € dom(h)
» (x:=[e], h,s) = fail if s(e) & dom(h)
» ([x] :== e, h,s) = (h[s(x) :=s(e)],s) if s(e) € dom(h)
» ([x] :== e, h,s) = falil if s(e) & dom(h)
» (x:=cons(e), h,s)=-(h[n:=s(e)], s[x:=n]) where n¢Z dom(h)
» (dispose(x), h,s) = (h[s(x) := L], s) if s(e) € dom(h)
» (dispose(x), h, s) = fail if s(e) ¢ dom(h)

Reynolds’ logic

Strong partial correctness axiomatization:

» all rules and axioms of Hoare's logic

Reynolds’ logic

Strong partial correctness axiomatization:
» all rules and axioms of Hoare's logic
> {Jy.(e = y) Aply/x]} x = [e] {p}
> {(x= =)« ((x = e) = p)} [x] ;== e {p}
» {Vx.(x — e) = p} x := cons(e) {p} (x & FV(e))
> {(x = —) = p} dispose(x) {p}

Reynolds’ logic

Strong partial correctness axiomatization:

» all rules and axioms of Hoare's logic

> {3y.(e = y) Aply/x]} x:=[e] {p}

> {(x=) x((x—=e) = p)} X :=e{p}

» {Vx.(x — e) = p} x := cons(e) {p} (x & FV(e))
> {(x = —) = p} dispose(x) {p}

» the frame rule

{r} S {q}
{pxry S{gxr}

Reynolds’ logic

Strong partial correctness axiomatization:

» all rules and axioms of Hoare's logic

> {3y.(e = y) Aply/x]} x:=[e] {p}

> {(x=) x((x—=e) = p)} X :=e{p}

» {Vx.(x — e) = p} x := cons(e) {p} (x & FV(e))
> {(x = —) = p} dispose(x) {p}

» the frame rule

{r} S {q}
{pxry S{gxr}

Soundness and relative completeness
(Bannister, Hofner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Reynolds’ logic

Strong partial correctness axiomatization:

» all rules and axioms of Hoare's logic

> {3y.(e = y) Aply/x]} x = [e] {p}

> {(x= =)= ((x = e) = p)} [x] = e {p}

» {Vx.(x — e) =« p} x := cons(e) {p} (x & FV(e))
> {(x — —) = p} dispose(x) {p}

>

the frame rule

{p} S {q}
{pxr}S{gxr}

Soundness and relative completeness
(Bannister, Hofner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out

Dynamic separation logic

Language:
p.qi=bl(e—=€) | pAglp—=ql|Ixp|pxqlp—=ql|l[Slp

Interpretation:
» h,s = [S]piff (S, h,s) # fail and
(S,h,s) = (W,s") implies W', s" = p

Fact
> = {[Slq} S {q}
> = {p} S {q} implies p — [S]q

Dynamic separation logic
Language:
p.qi=bl(e—=€) | pAglp—=ql|Ixp|pxqlp—q|[Slp

Interpretation:

» h,s = [S]piff (S, h,s) # fail and
(S,h,s) = (W,s") implies W', s" = p

Fact
> = {[Slq} S {q}

> = {p} S {q} implies p — [S]q

Question. Can we analyze [S]p compositionally in p?

Dynamic separation logic

Language:
p.qi=bl(e—=€) | pAglp—=ql|Ixp|pxqlp—q|[Slp

Interpretation:
» h,s = [S]piff (S, h,s) # fail and
(S,h,s) = (W,s") implies W', s" = p

Fact
> = {[Slq} S {q}
> = {p} S {q} implies p — [S]q

Question. Can we analyze [S]p compositionally in p?
Answer. Yes, using equivalence axioms, allowing rewriting

Axiomatization
Introduce pseudo-instructions:
> ((x) :=e, h,s) = (h[s(x) :=s(e)],s) unconditionally
» ((x) =1, h,s)= (h[s(x):=1],s) unconditionally

Axiomatization

Introduce pseudo-instructions:

» ((x) :=e, h,s) = (h[s(x) :=s(e)],s) unconditionally
> ((x):= L, h,s)= (h[s(x) :=1],s) unconditionally
[[X] == elp = (x = =) Al{x) = e]p (E6)

[x :=cons(e)]p=Vx.(x & —) = [(x) :=e]p (E7)
[dispose(x)]p = (x — —) A [(x) :== L]p (E8)

Axiomatization

Introduce pseudo-instructions:

» ((x) :=e, h,s) = (h[s(x) :=s(e)],s) unconditionally
» ((x) =1, h,s)= (h[s(x):=1],s) unconditionally
[[X] == elp = (x = =) Al{x) = e]p (E6)

[x :=cons(e)]p=Vx.(x & —) = [(x) :=e]p (E7)
[dispose(x)]p = (x — —) A [(x) :== L]p (E8)

[(x) == e]lb=b (E9)
[(x) J(€'—=e")=(x=e Ne"=e)V (x#£e ne'—e") (EL0)

[(x) == el(p * q) = ([(x) == e]lp * ¢') V (p' = [(x) :== e]q) (E11)
[(x) :=el(p — q) = p' = [(x) == e]q (E12)

where p = pA(x % —)and ¢ = g A (x ¥ —) and
[(x) := e] works like substitution for logical connectives (E1-3)

Axiomatization

Introduce pseudo-instructions:

» ((x) :=e, h,s) = (h[s(x) :=s(e)],s) unconditionally
» ((x) =1, h,s)= (h[s(x):=1],s) unconditionally
[[X] :=elp = (x = =) A [(x) == e]p (E6)
[x :=cons(e)]p=Vx.(x & —) = [(x) :=e]p (E7)
[dispose(x)]p = (x — —) A [(x) :== L]p (E8)
[(x):=1]b=b (E13)
[(x):=1](e—=e€)=(x#eA(e—=¢€)) (E14)
[(x) = Ll(p * q) = [(x) :== Llp + [(x) :== Llq (E15)
[(x) = L](p — q) = (p" — [(x) := L]q) A
Vy [(x) == ylp = [(x) == ¥lq (E16)
where p’ = p A (x & —) and [(x) := L] works for A, =,V (E1-3)

Surprising impact

[[x] == 0]

—~~

y < 2)

Surprising impact

Surprising impact

(x—==)*((x—0) = (y — 2))

[[x] == 0]

—~~

y < 2)

(x>)N (y=xAz=0)V(y#xAy = 2))

Surprising impact

(x>)N (y=xAz=0)V(y#xAy = 2))

» Bug in CVC4-SL, not equivalent in CVC5-SL (incomplete)
» No proof known in Iris, needs more axioms (incomplete)
» No proof known in VerCors / Viper (incomplete)

» Verifast? (I did not try yet)

Contributions

» This talk has introduced Dynamic Separation Logic (DSL)
> Axiomatization (useful for eliminating modalities)
» Novel weakest preconditions axiomatization
» To appear: paper in MFPS’23
» Robust: novel strongest postcondition axiomatization
» Robust: WP and SP for intuitionistic separation logic

Contributions

» This talk has introduced Dynamic Separation Logic (DSL)
> Axiomatization (useful for eliminating modalities)
» Novel weakest preconditions axiomatization
» To appear: paper in MFPS’23
» Robust: novel strongest postcondition axiomatization
» Robust: WP and SP for intuitionistic separation logic

» The Logic of Separation Logic (paper in TABLEAUX'23)
> Novel model theory for separation logic (general models)
» Sound and complete proof theory (Henkin-like models)
» Sound and complete program logic (memory models)

Contributions

» This talk has introduced Dynamic Separation Logic (DSL)

> Axiomatization (useful for eliminating modalities)

» Novel weakest preconditions axiomatization

» To appear: paper in MFPS’23

» Robust: novel strongest postcondition axiomatization
» Robust: WP and SP for intuitionistic separation logic

» The Logic of Separation Logic (paper in TABLEAUX'23)

> Novel model theory for separation logic (general models)
» Sound and complete proof theory (Henkin-like models)
» Sound and complete program logic (memory models)

» PhD thesis: New Foundations for Separation Logic

Contributions

» This talk has introduced Dynamic Separation Logic (DSL)

> Axiomatization (useful for eliminating modalities)

» Novel weakest preconditions axiomatization

» To appear: paper in MFPS’23

» Robust: novel strongest postcondition axiomatization
» Robust: WP and SP for intuitionistic separation logic

» The Logic of Separation Logic (paper in TABLEAUX'23)

> Novel model theory for separation logic (general models)
» Sound and complete proof theory (Henkin-like models)
» Sound and complete program logic (memory models)

» PhD thesis: New Foundations for Separation Logic

» Future work: use Dynamic Separation Logic in KeY 3.07

