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Our intuition came from years working with KeY:
» using dynamic logic
» formal basis for the heap update modality
» working with different heaps, anon. heap update

» dependency contracts, dynamic footprints

Separation logic is less expressive than KeY:
» simpler reasoning about the heap (local perspective)
» but has many techniques for automatic tool support

Opportunity to form a bridge between SL and KeY?
> integrate automated techniques (fragments of SL) in KeY

> increase KeY's competitiveness to other verification systems
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» Reynolds’ logic has different axiomatizations such that
= {p} S {q} if and only if - {p} S {q}
(relative completeness: oracle, expressivity)
» Local axioms plus frame rule

» Global weakest precondition (WP) axiomatization
» These do not analyze the logical structure of p or g

» This talk introduces Dynamic Separation Logic (DSL)
= {p} S {q} if and only if = p — [S]q

» Axiomatization (useful for eliminating modalities)
» Weakest preconditions that do analyze logical structure
> Gracefulness :-)

» Leads to surprising equivalences in Separation Logic
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Separation logic (syntax)

Signature:
standard signature of arithmetic: 0,1, +, x, <

Language:
p,gi=b|(e=¢€)|pAglp—=q|Vxp|pxq|p—*q

Derived notions:
» classical 3x and Vv
> (e — —) as Ix(e < x), and emp as Vx(x 4 —)
> (e—é)as(e—= )N (Vx.(x = —-) = x=c¢)
Examples
> (e—é€)—(e—€)but (e —e€) A (e é€)

> (e > €)= (e €) * true
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Interpretation:
h,s = p, given heap h: Z —¢, Z and store s : V — Z

» Tarski-style, standard classical logic

> h,s = (e =€) iff s(e) € dom(h) and h(s(e)) = s(€’)

» h,s = px*qiff hi,s = p and ha,s = q for some hy W hy = h
> hysEp—xqiff ;s = pimplies hW h,s = qgforall W L h

Examples

> (x> DA(y—=1)AKx—=1Dx(y—1)
> (x = 1)xemp /4 (x — 1) Aemp

> px(p—*q)—q
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Programming language:
Si=x:=e|x:=]e]|[x] :=e| x:=cons(e) | dispose(e) | ...

Big-step operational semantics:
(S,h,s) = (W,s') or (S, h,s) = fail or neither

» (x:=[e], h,s) = (h,s[x := h(s(e))]) if s(e) € dom(h)
» (x:=[e], h,s) = fail if s(e) & dom(h)
» ([x] :== e, h,s) = (h[s(x) :=s(e)],s) if s(e) € dom(h)
» ([x] :== e, h,s) = falil if s(e) & dom(h)
» (x:=cons(e), h,s)=-(h[n:=s(e)], s[x:=n]) where n¢Z dom(h)
» (dispose(x), h,s) = (h[s(x) := L], s) if s(e) € dom(h)
» (dispose(x), h, s) = fail if s(e) ¢ dom(h)
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Reynolds’ logic

Strong partial correctness axiomatization:

» all rules and axioms of Hoare's logic

> {3y.(e = y) Aply/x]} x = [e] {p}

> {(x= =)= ((x = e) = p)} [x] = e {p}

» {Vx.(x — e) =« p} x := cons(e) {p} (x & FV(e))
> {(x — —) = p} dispose(x) {p}

>

the frame rule

{p} S {q}
{pxr}S{gxr}

Soundness and relative completeness
(Bannister, Hofner, Klein, 2018)
(Tatsuta, Chin, Al Ameen, 2019)

Lacks gracefulness: first-order in, first-order out
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Dynamic separation logic

Language:
p.qi=bl(e—=€) | pAglp—=ql|Ixp|pxqlp—q|[Slp

Interpretation:
» h,s = [S]piff (S, h,s) # fail and
(S,h,s) = (W,s") implies W', s" = p

Fact
> = {[Slq} S {q}
> = {p} S {q} implies p — [S]q

Question. Can we analyze [S]p compositionally in p?
Answer. Yes, using equivalence axioms, allowing rewriting
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» ((x) :=e, h,s) = (h[s(x) :=s(e)],s) unconditionally
» ((x) =1, h,s)= (h[s(x):=1],s) unconditionally
[[X] :=elp = (x = =) A [(x) == e]p (E6)
[x :=cons(e)]p=Vx.(x & —) = [(x) :=e]p (E7)
[dispose(x)]p = (x — —) A [(x) :== L]p (E8)
[(x):=1]b=b (E13)
[(x):=1](e—=e€)=(x#eA(e—=¢€)) (E14)
[(x) = Ll(p * q) = [(x) :== Llp + [(x) :== Llq (E15)
[(x) = L](p — q) = (p" — [(x) := L]q) A
Vy [(x) == ylp = [(x) == ¥lq (E16)
where p’ = p A (x & —) and [(x) := L] works for A, =,V (E1-3)
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Surprising impact

(x> )N (y=xAz=0)V(y#xAy = 2))

» Bug in CVC4-SL, not equivalent in CVC5-SL (incomplete)
» No proof known in Iris, needs more axioms (incomplete)
» No proof known in VerCors / Viper (incomplete)

» Verifast? (I did not try yet)
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» This talk has introduced Dynamic Separation Logic (DSL)

> Axiomatization (useful for eliminating modalities)

» Novel weakest preconditions axiomatization

» To appear: paper in MFPS’23

» Robust: novel strongest postcondition axiomatization
» Robust: WP and SP for intuitionistic separation logic

» The Logic of Separation Logic (paper in TABLEAUX'23)

> Novel model theory for separation logic (general models)
» Sound and complete proof theory (Henkin-like models)
» Sound and complete program logic (memory models)

» PhD thesis: New Foundations for Separation Logic

» Future work: use Dynamic Separation Logic in KeY 3.07



