
Recent Advances in
Floating-point Static Analyses
Eva Darulova
Uppsala university

(in a very general sense)

Finite precision

• models of the physical world, (control) algorithms, etc. assume real-valued arithmetic

• exact computation not always feasible (e.g. for sine) or is expensive

• computer implementations need finite precision, e.g. floating-point arithmetic

−x1 * x2 − 2x2x3 − x1 − x3

x1, x2, x3 ∈ ℝ

def rigidBody(x1: Double, x2: Double, x3: Double): Double =
 -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float =
 -x1 * x2 - 2 * x2 * x3 - x1 - x3

Finite precision

• computer implementations need finite precision, e.g. floating-point arithmetic

• finite precision introduces rounding errors

def rigidBody(x1: Double, x2: Double, x3: Double): Double =
 -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float =
 -x1 * x2 - 2 * x2 * x3 - x1 - x3

scala> rigidBody(0.1, 0.1, 0.1)
val res0: Double = -0.23

scala> rigidBodyf(0.1f, 0.1f, 0.1f)
val res1: Float = -0.22999999

scala> rigidBody(0.1f, 0.1f, 0.1f)
val res2: Double = -0.23000000387430192

scala> res0 + res0 + res0
val res3: Double = -0.6900000000000001

Finite precision

• computer implementations need finite precision, e.g. floating-point arithmetic

• finite precision introduces rounding errors

• rounding breaks mathematical identities

def rigidBody(x1: Double, x2: Double, x3: Double): Double =
 -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float =
 -x1 * x2 - 2 * x2 * x3 - x1 - x3

scala> rigidBody(0.1, 0.1, 0.1)
val res0: Double = -0.23

scala> rigidBodyf(0.1f, 0.1f, 0.1f)
val res1: Float = -0.22999999

scala> rigidBody(0.1f, 0.1f, 0.1f)
val res2: Double = -0.23000000387430192

scala> res0 + res0 + res0
val res3: Double = -0.6900000000000001

scala> rigidBodyf2(0.1f, 0.1f, 0.1f)
val res4: Float = -0.23def rigidBodyf2(x1: Float, x2: Float, x3: Float): Float =

 (-x1 * x2 - (x1 + x3)) - (x2 * 2 * x3)
scala> rigidBody(0.1, 0.1, 0.1/0.0)
val res4: Double = -Infinity

Dealing with errors

Xavier Leroy:
“It makes us nervous to fly an airplane since we know they

OPERATE using floating-point arithmetic.”
Verified squared: does critical software deserve verified tools?
Talk at POPL, 2011.

https://xkcd.com/2295/

Need: Rigorous correctness guarantees

Are we there yet?

Spoiler: No

This talk: where are we and why is it so hard?

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS’21 and STTT’23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS’23

This talk: where are we and why is it so hard?

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS’21 and STTT’23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS’23

IEEE 754 floating-point standard

• Different rounding modes: to nearest (default), to 0, to +/- Infinity

• Abstraction for arithmetic operations and rounding to nearest:

Representation:

• base 2 (base 10 also possible)

• m: mantissa, |m| < 1

• e: exponent

Arithmetic operations: computed as if with real arithmetic and then rounded

m ⋅ 2e
Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

1

precision m bits e bits

half (16) 11 5 2−11 ≈ 4.88e-04 2−25

single (32) 24 8 2−24 ≈ 5.96e-08 2−150

double (64) 53 11 2−53 ≈ 1.11e-16 2−1075

ϵ δ

Special values

• underflow → +0.0 or -0.0

• overflow → Infinity or -Infinity

• 1.0 / 0.0 → Infinity

• sqrt(-42.0) → NaN

• NaN * 0.0 → NaN

• NaN == NaN → false

Representation of normal values:

Special values: +Infinity, -Infinity, +0.0, -0.0, NaN (Not-a-Number)

m ⋅ 2e

typically, special values signal an error

Consequence of rounding and special values

Floating-point arithmetic is commutative, but not associative or distributive:

x + (y + z) != (x + y) + z

x * (y * z) != (x * y) * z

x * (y + z) != (x * y) + (x * z)

x / 10 != x * 0.1

x == y ⇏ 1/x == 1/y

x != x

When analyzing code, need to follow exact order of computation.

Other real-valued identities also do not hold:

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS’21 and STTT’23

joint work with Rosa Abbasi, Mattias Ulbrich, Jonas Schiffl, Wolfgang Ahrendt

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS’23

Goal: prove absence of runtime errors and special values

public class Circuit {

 double maxVoltage;
 double frequency;
 double resistance;
 double inductance;

 public Complex computeImpedance() {
 return new Complex(resistance, 2.0 * Math.PI * frequency * inductance);
 }

 public Complex computeCurrent() {
 return new Complex(maxVoltage, 0.0).divide(computeImpedance());
 }

 public double computeInstantCurrent(double time) {
 Complex current = computeCurrent();
 double maxCurrent = Math.sqrt(current.getRealPart() * current.getRealPart() +
 current.getImaginaryPart() * current.getImaginaryPart());
 double theta = Math.atan(current.getImaginaryPart() / current.getRealPart());

 return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);
 }
}

in Java programs

Does the program divide by zero?

Does the program overflow?

public class PostInc {

 public PostInc rec;
 public int x, y;

 /*@ public invariant rec.x >= 0 && rec.y >= 0; @*/

 /*@ public normal_behaviour
 @ requires true;
 @ ensures rec.x == \old(rec.y) + 1 && rec.y == \old(rec.y) + 1;
 @*/
 public void postInc() {
 rec.x = rec.y++;
 }
}

KeY workflow

Annotated Program

self.rec.x >= 0,
 self.rec.y >=0
==>
 Self.rec = null,
 Self = null,
 self.rec.y = 1 + self.rec.y

taclet rules application

✓

✗

translate to SMT-lib

public class Complex {

 double realPart;
 double imaginaryPart;

 /*@ public normal_behaviour
 @ requires realPart == 0.0 && imaginaryPart == 0.0;
 @ ensures \fp_nan(\result.realPart) && \fp_nan(\result.imaginaryPart);
 @*/
 public Complex reciprocal() {
 double scale = realPart * realPart + imaginaryPart * imaginaryPart;
 return new Complex(realPart / scale, -imaginaryPart / scale);
 }
}

Basic extension for floating-points

taclet rules application

Annotated Program

✓

✗

translate to SMT-lib

public class Complex {

 double realPart;
 double imaginaryPart;

 /*@ public normal_behaviour
 @ requires realPart == 0.0 && imaginaryPart == 0.0;
 @ ensures \fp_nan(\result.realPart) && \fp_nan(\result.imaginaryPart);
 @*/
 public Complex reciprocal() {
 double scale = realPart * realPart + imaginaryPart * imaginaryPart;
 return new Complex(realPart / scale, -imaginaryPart / scale);
 }
}

Basic extension for floating-points

taclet rules application

Annotated Program

✓

✗

translate to SMT-lib

doubleIsNaN(divDoubleIEEE(RNE,
self.realPart,
addDoubleIEEE(RNE,

mulDoubleIEEE(RNE,
self.realPart,
self.realPart),

mulDoubleIEEE(RNE,
self.imaginaryPart,
self.imaginaryPart)))

…..

floating-points
heap etc.

Basic extension

 /*@ public normal_behaviour
 @ requires !\fp_nan(d);
 @ ensures !\fp_nan(\result);
 @ ensures (d < 1.e307 && d > -1.e307) ==>
 @ !\fp_infinite(\result);
 @*/
 public static double twice(double d) {
 return 2.0 * d;
}

 doubleIsInfinite(mulDoubleIEEE(RNE, 2.0, d)) ∧ d < 1.e307 ∧ d > -(1.e307)

...
(assert (fp.isInfinite (fp.mul RNE
 (fp #b0 #b10000000000 #b00)
 (u2d ui_d))))
...

3- Modular Translator

1- Predicates

find javaMulDouble(f1,f2)
Replace mulDoubleIEEE(RNE,f1,f2)

2- Taclet Rules

Library functions

public class Circuit {

 double maxVoltage;
 double frequency;
 double resistance;
 double inductance;

 /*@ public normal_behaviour
 @ requires this.maxVoltage > 1.0 && this.maxVoltage < 12.0 &&
 @ this.frequency > 1.0 && this.frequency < 100.0 &&
 @ time > 0.0 && time < 300.0;
 @ ensures \fp_nice(\result);
 @*/
 public double computeInstantVoltage(double time) {
 return maxVoltage * Math.cos(2.0 * Math.PI * frequency * time);
 }
}

no SMT-lib equivalent for transcendental functions:

• encode transcendental functions as uninterpreted functions

• axiomatize them

in SMT queries, or

in KeY as taclet rules

Axioms

• capture high-level properties of library functions

• comply with the specifications in the IEEE 754 standard

• e.g. encode value ranges and allow one to show that a function application is not NaN

Axiom: !fp_nan(a) !fp_infinite(a) -1.0 cos(a) 1.0∧ → ≤ ≤

/*@ public normal_behaviour
 @ requires this.maxVoltage > 1.0 && this.maxVoltage < 12.0 &&
 @ this.frequency > 1.0 && this.frequency < 100.0 &&
 @ time > 0.0 && time < 300.0;
 @ ensures \fp_nice(\result);
 @*/
public double computeInstantVoltage(double time) {
 return maxVoltage * Math.cos(2.0 * Math.PI * frequency * time);
}

Axiomatization

in SMT queries

function definitions and axioms are added to the SMT-LIB translation

axioms are expressed as quantified floating-point formulas

via taclet rules in KeY

axioms are encoded as taclets in KeY

fully automated, or user can choose which rule to apply

no quantified formulas

(assert (forall ((a Float64)) (=>
(and (not (fp.isNaN a)) (not (fp.isInfinite a)))
(and (fp.leq (cosDouble a)
(fp #b0 #b01111111111 #b0000...000000))
(fp.geq (cosDouble a)
(fp #b1 #b01111111111 #b0000...000000))))))

find cos(a)
add fp_nan(a) fp_infinite(a) -1.0 cos(a) +1.0 ¬ ∧ ¬ → ≤ ≤ ⟹

We can now prove

The absence of special values using fp_nan, fp_infinite, fp_nice

/*@ public normal_behavior
 @ requires \fp_nice(arg0.x) && \fp_nice(arg0.y) && \fp_nice(arg1) && \fp_nice(arg2);
 @ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y) && !\fp_nan(\result.width) && !\fp_nan(\result.height);
 @ also
 @ public normal_behavior
 @ requires -5.53 <= arg0.x && arg0.x <= -3.38 && -5.53 <= arg0.y && arg0.y <= -3.38 &&
 @ 3.1 < arg0.width && arg0.width <= 3.7332 && 3.0000001 < arg0.height && arg0.height <=4.0004 &&
 @ 3.0003001 < arg1 && arg1 <= 4.0024 && -6.4000003 < arg2 && arg2 <= 3.0001;
 @ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y) && !\fp_nan(\result.width) &&!\fp_nan(\result.height);
 @*/
public Rectangle scale(Rectangle arg0, double arg1, double arg2){
 Area v1 = new Area(arg0);
 AffineTransform v2 = AffineTransform.getScaleInstance(arg1, arg2);
 Area v3 = v1.createTransformedArea(v2);
 Rectangle v4 = v3.getRectangle2D();
 return v4;
}

counter-example

valid

We can now prove

The absence of special values with transcendentals

public class Circuit {
 double maxVoltage, frequency, resistance, inductance;
 // ...

 /*@ public normal_behavior
 @ requires 1.0<this.maxVoltage && this.maxVoltage<12.0 && 1.0<this.frequency && this.frequency<100.0 &&
 @ 1.0<this.resistance && this.resistance<50.0 && 0.001<this.inductance && this.inductance<0.004 &&
 @ 0.0 < time && time < 300.0;
 @ ensures !\fp_nan(\result) && !\fp_infinite(\result);
 @*/
 public double instantCurrent(double time) {
 Complex curr = computeCurrent();
 double maxCurrent = Math.sqrt(curr.getRealPart() * curr.getRealPart() +
 curr.getImaginaryPart() * curr.getImaginaryPart());
 double theta = Math.atan(curr.getImaginaryPart() / curr.getRealPart());
 return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);
 }
}

need to use fp.sqrt

axioms as taclet rules

We can now prove

Functional properties that are expressible in floating-point arithmetic
public class Rotation {
 final static double cos90 = 6.123233995736766E-17;
 final static double sin90 = 1.0;

 public static double[] rotate(double[] vec) { // rotates a 2D vector by 90 degrees
 double x = vec[0] * cos90 - vec[1] * sin90;
 double y = vec[0] * sin90 + vec[1] * cos90;
 return new double[]{x, y};
 }

 /*@ public normal_behaviour
 @ requires (\forall int i; 0 <= i && i < vec.length;
 @ vec[i] > 1.0 && vec[i] < 2.0) && vec.length == 2;
 @ ensures \result[0] < 1.0E-15 && \result[1] < 1.0E-15;
 @*/
 public static double[] computeError(double[] vec) {
 double[] temp = rotate(rotate(rotate(rotate(vec))));
 return new double[] { Math.abs(temp[0] - vec[0]), Math.abs(temp[1] - vec[1])};
 }
}

precomputed cosine

We can now prove

Loop invariants

invariant generated by external tool [1]

validated by KeY

/*@ public normal_behavior
 @ requires 0.0f <= u && u <= 0.0f && 2.0f <= v && v <= 3.0f;
 @ diverges true;
 @*/
public float pendulum-approx(float u, float v) {

 /*@ loop_invariant -1.1f <= u && u <= 1.2f &&
 @ -3.2f <= v && v <= 3.1f &&
 @ (-0.11f*u) + (0.01f*v) + (1.0f*u*u) + (0.03f*u*v)
 @ + (0.12f*v*v) <= 1.15f;
 @*/
 while (true) {
 u = u + 0.01f * v;
 v = v + 0.01f * (-0.5f * v - 9.81f *
 (u - (u * u * u) / 6.0f +
 (u * u * u * u * u) / 120.0f));
 }
 return u;
}

[1] Counterexample- and Simulation-Guided Floating-Point Loop Invariant Synthesis. A. Izycheva, E. Darulova and Helmut Seidl. SAS’20

Solver performance

Running times for valid goals

Ti
m

e
(s

) (
Lo

g1
0

Sc
al

e)

Goals (ordered by run time, without quantifiers)

• Best running time: CVC4

• Most goals validated: MathSAT

Floating-point solvers have improved!

Axiomatization performance

• axiomatization in KeY avoids quantified formulas: both CVC4 and Z3 prove more goals

• fp.sqrt vs axiomatization:

axiomatization mostly cheaper, but weaker

Experiment Quantified
Axioms # Goals

CVC4 Z3 MathSAT

Goals
Decided Avg. # Goals

Decided Avg. # Goals
Decided Avg.

Axioms in SMT ✓ 10 9 33.2 4 63.4 - -

Axioms as Taclets ✗ 10 10 33.4 5 74.2 8 0.9

float

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS’21 and STTT’23

Tutorial on rounding error analysis [1] (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS’23

[1] Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. A. Solovyev, C. Jacobsen, Z. Rakamaric, G. Gopalakrishnan. FM’15

Bounding rounding errorsTutorial example:

f(y, z) = y2 + z2 where y 2 [10.0, 20.0], z 2 [20.0, 80.0]

abstraction: needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

1

real-valued specification:

floating-point implementation:

Tutorial example:

f(y, z) = y2 + z2 where y 2 [10.0, 20.0], z 2 [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

abstraction: needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

1

Goal: compute absolute rounding error bound:

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction: needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

1

• main challenge: accurate bounds

• over-approximation of the true errors; impossible to get exact errors in general

• (too) complex to reason about: combines real-valued and floating-point reasoning

cannot be simply phrased as SMT-query

• (aside: easier than relative errors)

Abstracting floating-point arithmetic

too complex:

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction: needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

1

use abstraction of floating-point arithmetic

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

1

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

1

to compute abstraction

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

f̂(y, z, e,d) =

✓
((y(1+e1)+d1)

2(1+e2)+d2)+((z(1+e3)+d3)
2(1+e4)+d4)

◆
(1+e5)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

1

• now only real-valued

• but still too complex to reason about automatically

• apply Taylor approximation; standard approach in maths and physics to simplify equations

Taylor approximation

compute Taylor approximation around (y, z, 0, 0)

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

f̂(y, z, e,d) =

✓
((y(1+e1)+d1)

2(1+e2)+d2)+((z(1+e3)+d3)
2(1+e4)+d4)

◆
(1+e5)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

1

Modular Floating-Point Error Analysis 5

function f̃(x̃) using the rounding model from Equation 1 into a real-valued
function f̂(x, e,d) to compute a bound on the roundoff error:

max
x2I

|f(x)� f̂(x, e,d))|

However, while now entirely real-valued, this expression is in general too
complex for (continuous, real-valued) optimization tools to handle. To reduce
complexity, FPTaylor applies a Taylor expansion:

f(x) = f(a) +
kX

i=1

@f

@xi
(a)(xi � ai) + 1/2

kX

i,j=1

@2f

@xi@xj
(p)(xi � ai)(xj � aj) (3)

that allows to approximate an arbitrary sufficiently smooth function by a poly-
nomial expression around some point a. p is a point which depends on x and
a and k is the number of input parameters of f . Taylor series define infinite
expansions, however, in practice these are terminated after some finite number
of terms, and a remainder term soundly bounds (over-estimates) the skipped
higher-order terms. In Equation 3 the last term is the remainder.

Applying a first-order Taylor approximation to the abstracted floating-point
function f̂(x, e,d) around the point (x,0,0) we get:

f̂(x, e,d) = f̂(x, 0, 0) +
kX

i=1

@f̂
@ei

(x, 0, 0)(ei � 0) +
kX

i=1

@f̂
@di

(x, 0, 0)(di � 0) +R2(x, e,d)

R2(x, e,d) = 1/2
2kX

i,j=1

@2f̂
@yi@yj

(x,p)yiyj

(4)

where y1, . . . y2k range over e1, . . . , ek, d1, . . . , dk respectively. Since f̂(x, 0, 0) =
f(x), one can approximate |f̂(x, e,d)� f(x)| by:

|f̂(x, e,d)� f(x)| = |
kX

i=1

@f̂

@ei
(x, 0, 0)ei +

kX

i=1

@f̂

@di
(x, 0, 0)di +R2(x, e,d)|

(FPTaylor Error)
To compute a concrete roundoff error bound, the above expression is maxi-

mized over a given input domain I using rigorous global optimization techniques
such as interval arithmetic [25] or branch-and-bound [27].

The above model can be straight-forwardly extended to capture input errors
on (particular) variables by increasing the bound on the corresponding error
variables ei and/or di. Similarly, library functions for mathematical functions such
as sin, cos, exp, ..., are supported by setting the bound on their corresponding
error variables according to the specification. Note that since the derivatives of the
standard mathematical library functions are well-defined, the partial derivatives
in the equations can be immediately computed.

general first-order Taylor approximation:

choose suitable point first-order derivative remainder bounds error

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

f̂(y, z, e,d) =

✓
((y(1+e1)+d1)

2(1+e2)+d2)+((z(1+e3)+d3)
2(1+e4)+d4)

◆
(1+e5)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

1

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

f̂(y, z, e,d) =

✓
((y(1+e1)+d1)

2(1+e2)+d2)+((z(1+e3)+d3)
2(1+e4)+d4)

◆
(1+e5)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

1

approximate bound on roundoff error:

Bounding rounding errors

• compute floating-point abstraction

• compute derivatives symbolically

• bound derivates over interval input domain

with interval arithmetic or branch-and-bound

• supports arithmetic and transcendental functions (as library functions, but derivatives are well-defined)

• does not support function calls modularly

requires inlining of functions

Tutorial example:

f(y, z) = y2 + z2 where y 2 Y = [10.0, 20.0], z 2 Z = [20.0, 80.0]

f̃(ỹ, z̃) = ỹ ⇤̃ ỹ + z̃ ⇤̃ z̃ where ỹ = y + uy, z̃ = z + uz

bound on the rounding error:

max
y,z2Y,Z

����f(y, z)� f̃(ỹ, z̃)

����

abstraction:

õp = op(1 + e) + d where |e|  ✏, |d|  �

f̂(y, z, e,d) =

✓
((y(1+e1)+d1)

2(1+e2)+d2)+((z(1+e3)+d3)
2(1+e4)+d4)

◆
(1+e5)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

1

{ abstraction/simplification

{ solving/optimization

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS’21 and STTT’23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS’23

joint work with Rosa Abbasi

Modular rounding error analysis

• consider simplified case first: no input errors

• step 1: compute an error specification for each procedure

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

simplified case:

max
x2I

|g(x)� g̃(x)|  |�g|

max
y,z2J,K

|f(y, z)� f̃(y, z)|  |�f |

We define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (3)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

• the remainder terms that do not contain any � terms themselves.

Then, we also need the propagation error:

�g = g(x̃)� g(x) where x̃ = x+ ux

�f = f(ỹ, z̃)� f(y, z) where ỹ = y + uy, z̃ = z + uz

similar to roundo↵ error, we treat the propagation of procedures as symbolic
variables, and compute the propagation as:

�f =
kX

i=1

@f

@xi
ui +

lX

i=1

@f

@gi(ai)
�gi(ai) +R2(x,u,�(a)) (4)

2

• step 2: instantiate error specifications for each procedure at their call-sites with appropriate contexts

• goal: abstract enough but not too much

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

note that
y, z 2 [0.0, 100.0]

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

simplified case:

max
x2I

|g(x)� g̃(x)|  |�g|

max
y,z2J,K

|f(y, z)� f̃(y, z)|  |�f |

We define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (3)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

2

constant error bound

looses too much accuracy

pre-compute only derivatives

modest performance

?

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

note that
y, z 2 [0.0, 100.0]

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

simplified case:

max
x2I

|g(x)� g̃(x)|  |�g|

max
y,z2J,K

|f(y, z)� f̃(y, z)|  |�f |

We define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (3)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

2

reuse error spec

Step 1: Roundoff error specification

g(x, y) = x2 + y

ĝ(x, y, e1, e2, d1, d2) =

✓⇣
x2(1 + e1) + d1

⌘
+ y

◆
(1 + e2)

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

if we inline:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = y2 + z2 where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(2)

and then abstraction would look like:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, ei, di) =

✓
(y2(1 + e2) + d2) + (z2(1 + e3) + d3)

◆
(1 + e4)

(3)

instead, we define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

1

real-valued result

depends on input parameter

• extend rounding error model with procedures: replaced with (real-valued) symbolic variables

absolute error

• values of symbolic variables only needed at instantiation time

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

note that
y, z 2 [0.0, 100.0]

g(x) = x2

f(y, z) = g(y) + g(z)
(2)

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

simplified case:

max
x2I

|g(x)� g̃(x)|  |�g|

max
y,z2J,K

|f(y, z)� f̃(y, z)|  |�f |

We define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (3)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

2

Step 1: Roundoff error abstraction

g(x, y) = x2 + y

ĝ(x, y, e1, e2, d1, d2) =

✓⇣
x2(1 + e1) + d1

⌘
+ y

◆
(1 + e2)

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

if we inline:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = y2 + z2 where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(2)

and then abstraction would look like:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, ei, di) =

✓
(y2(1 + e2) + d2) + (z2(1 + e3) + d3)

◆
(1 + e4)

(3)

instead, we define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

1

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (2)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

• the remainder terms that do not contain any � terms themselves.

Then, we also need the propagation error

2

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (2)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

• the remainder terms that do not contain any � terms themselves.

Then, we also need the propagation error

2

• proceed as before with Taylor approximation:

treated symbolically

• pre-evaluate part of the Taylor approximations at abstraction stage already

Step 2: Instantiation

• instantiate error terms using interval analysis recursively

12 Rosa Abbasi and Eva Darulova(B)

error specification of these called procedures and instantiate them using the input
intervals of the calling procedure.

Note that in the first stage of the analysis and while computing the error
specifications, we over-approximated the error by pre-evaluating the smaller
terms there and adding them as constants to the error specifications. As a result,
in this stage and before instantiating an error specification of a called procedure,
we check that the input intervals of input parameters of the called procedure—for
which the error specification function is computed—enclose the intervals of input
arguments at the call site. This precondition check can also be applied post
analysis.

For the (Running Example), instantiating the roundoff error specification of
g results in the following evaluated � functions.

�g = ✏max |x2|+ �,

�f = ✏max |g(y) + g(z)|+ (1 + 2✏)max |�g(y) + �g(z)|

3.4 Handling Nested Procedures

We now explain how our analysis extends beyond the simple case discussed so
far, and in particular how it supports the case when a procedure argument is an
arithmetic expression or another procedure call.

In such a case, one needs to take into account the roundoff and propagation
error of such input arguments. We treat both cases uniformly by observing that
arithmetic expression arguments can be refactored into separate procedures, so
that we only need to consider nested procedure calls.

We compute the roundoff and propagation error specification of the nested
procedure call in a similar fashion as before. Though, while computing the �
and � specifications with nested procedure calls we incorporate their respective
� and � functions in the solution. That is, we take the � function of a nested
procedure into account while we create a rounding abstraction for a procedure
call. For example, for the procedure call f(g(a)), the rounding model is:

f̃(g(a)) = f(g(a) + �g(a)) + �f (g(a) + �g(a))

On the other hand, while computing the propagation error specification of a
procedure call such as f(g(a)), instead of multiplying the computed derivatives
by their respected initial error, they get multiplied by the respective propagation
error specification, i.e. �g(a).

Example We illustrate how we handle nested procedure calls with a slightly more
involved example:

g(x) = x2, where x 2 [0.0, 500.0]

h(y, z) = y + z, where y 2 [10.0, 20.0], z 2 [10.0, 20.0]

f(w, t) = g(h(w, t)) where w 2 [12.0, 15.0], t 2 [12.0, 15.0]

(8)

using intervals of y and z

• also check that intervals of error specifications are respected

• tradeoff: parts of βg have been computed with (potentially) wider ranges, but only once

• correctness: inlining error specs without pre-computation yields the same error expression

Input errors

• use triangle inequality to split error:

6 Rosa Abbasi and Eva Darulova(B)

3 Modular Roundoff Error Analysis

In principle, one can apply FPTaylor’s approach (Equation FPTaylor Error)
directly to programs with procedure calls by inlining them to obtain a single
arithmetic expression. This approach, however, results in potentially many re-
evaluations of the same or very similar expressions. In this section, we extend FP-
Taylor’s approach to a modular analysis by considering procedure calls explicitly.

At a high-level, our modular error computation is composed of two stages:

1. The abstraction stage computes an error specification for each procedure of
the input program (Section 3.1 and Section 3.2);

2. The instantiation stage instantiates the pre-computed error specifications for
each procedure at their call-sites with their appropriate contexts.

Note that each procedure is processed only once in each of these stages, regardless
of how often it is called in other procedures.

The main challenge is to compute the error specifications such that they, on
one hand, abstract enough over the individual arithmetic operations to provide
a benefit for the analysis in terms of performance, and on the other hand do not
lose too much accuracy during this abstraction to still provide meaningful results.

A naive way to achieve modularity is to compute, for each procedure, a
roundoff error bound as a constant value, and use that in the analysis of the
procedure calls. This simple approach is, however, not enough, since in order
to analyze a calling procedure, we do not only need to know which new error
it contributes, but we also need to bound its effect on already existing errors,
i.e. how it propagates them. The situation is even further complicated in the
presence of nested procedure calls.

Alternatively, one can attempt to pre-compute only the derivatives from Equa-
tion FPTaylor Error and leave all evaluation to the call sites. This approach then
effectively amounts to caching of the derivative computations, and does not affect
the analysis accuracy, but its performance benefit will be modest as much of the
computation effort will still be repeated.

Our approach rests on two observations from the above discussion. We first
split the error of a procedure into the propagation of input errors and roundoff
errors due to arithmetic operations, following [11]:

|f(x)� f̃(x̃)| = |f(x)� f(x̃) + f(x̃)� f̃(x̃)|  |f(x)� f(x̃)|| {z }
propagation error

+ |f(x̃)� f̃(x̃)|| {z }
round-off error

and compute error specifications for each of these errors separately. This allows
us to handle the propagation issue from which the naive approach suffers. We
employ suitable, though different, Taylor approximations for each of these parts.

Secondly, we pre-evaluate, at the abstraction stage already, part of the resulting
Taylor approximations, assuming the context, resp. input specification of each
procedure. This results in some accuracy loss when the procedure is called in a
context that only requires a narrower range, but saves analysis time.

• compute error specification in two parts:

Tutorial example:

f(y, z) = y2 + z2 where y 2 [10.0, 20.0], z 2 [20.0, 80.0]

abstraction: needs input errors too!

f̂(y, z, e,d) =

✓
(y2(1 + e1) + d1) + (z2(1 + e2) + d2)

◆
(1 + e3)

Taylor approximation wrt. ei, di around (y, z,0,0):

f̂(y, z, e,d) = f̂(y, z,0,0) +
@f̂

@e1

�����
y,z,0

e1 +
@f̂

@e2

�����
y,z,0

e2 +
@f̂

@e3

�����
y,z,0

e3 +

@f̂

@d1

�����
y,z,0

d1 +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

but we know that
f̂(y, z,0,0) = f(y, z)

hence the roundo↵ error is given by:

max
y,z2I

����f̂(y, z, e,d)� f(y, z)

���� = max
y,z2I

����
@f̂

@e1

�����
y,z,0

e1 + . . . +
@f̂

@d2

�����
y,z,0

d2 + R2(y, z, e,d)

����

Running example:

g(x) = x2 where x 2 [0.0, 100.0]

f(y, z) = g(y) + g(z) where y 2 [10.0, 20.0], z 2 [20.0, 80.0]
(1)

The overall errors are given by:

max
x2I

|g(x)� g̃(x̃)|  |�g|+ |�g|

max
y,z2J,K

|f(y, z)� f̃(ỹ, z̃)|  |�f |+ |�f |

We define a rounding model for procedures:

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2,�g(y),�g(z)) =

✓
g(y) + �g(y) + g(z) + �g(z)

◆
(1 + e2)

1

Now we need �g and �f :

�g =
@ĝ

@e1

����
x,0

e1 +
@ĝ

@d1

����
x,0

d1 (2)

and

�f =
@f̂
@e2

�����
y,z,0

e2 +
@f̂

@�g(y)

�����
y,z,0

�g(y) +
@f̂

@�g(z)

�����
y,z,0

�g(z) +R2(y, z, e2,�g(y),�g(z))

in the first step, we pre-evaluate the parts that tend to be small:

• the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,

• the remainder terms that do not contain any � terms themselves.

Then, we also need the propagation error:

�g = g(x̃)� g(x) where x̃ = x+ ux

�f = f(ỹ, z̃)� f(y, z) where ỹ = y + uy, z̃ = z + uz

similar to roundo↵ error, we treat the propagation of procedures as symbolic
variables, and compute the propagation as:

�f =
kX

i=1

@f

@xi
ui +

lX

i=1

@f

@gi(ai)
�gi(ai) +R2(x,u,�(a)) (3)

for the running examples, this looks as follows:

�g =
@g

@x
ux + 1/2(

@2g

@x2
u2
x) = 2xux + u2

x

�f =
@f

@g(y)
�g(y) +

@f

@g(z)
�g(z) = �g(y) + �g(z) = 2xuy + 2yuz + u2

y + u2
z

2

• compute Taylor approximation, but w.r.p. inputs

Evaluation

benchmark # top level
procedures

procedure calls # arithmetic ops # arith. ops inlined

matrix 5 15 26 371

 matrixXL 6 33 44 911

 matrixXS 4 6 17 101

 complex 15 152 98 699

 complexXL 16 181 127 1107

 complexXS 13 136 72 464

• matrix: library procedures on 3×3 matrices with determinant and Cramer’s rule

• complex: library procedures on complex numbers, used for computing properties of RL circuits

• XL/XS: larger or smaller versions

Performance-Accuracy wrt. state-of-the-art
Modular Floating-Point Error Analysis 19

Table 3. Comparison of Hugo’s, Daisy’s and FPTaylor’s runtimes and computed errors

Hugo Daisy FPTaylor
case study procedure

err time(s) error time(s) err time(s)
solveEquationX 4.14e-15 1.07e-15 3.83e-16
solveEquationY 4.68e-15

3.9
1.55e-15

10.5
6.11e-16

539.7
solveEquationZ 5.16e-15 1.90e-15 4.96e-16

matrix

solveEquationsVector 4.73e-15 2.09e-16 1.83e-16
matrixXL solveEquationsVectorXL 4.78e-15 5.9 2.53e-16 24.2 2.27e-16 1342.0
matrixXS 3.5 4.0 158.9

computeCurrentRe 6.12e-10 4.90e-10 9.65e-14
computeCurrentIm 6.71e-10 2.46e-11 2.42e-13
computeInstantCurrent 3.34e-03 5.57e+01 -
approxEnergy 1.00e-01 239.7 1.67e+03 439.1 - TO
computeRadiusVector 1.47e-11 6.20e-14 7.26e-14
computeDivideVector 2.39e-10 8.26e-14 3.85e-14

complex

computeReciprocalRadiusV. 3.12e-14 3.89e-14 4.67e-15
complexXL approxEnergyXL 2.00e-01 969.3 3.34e+03 1315.1 - TO
complexXS 181.7 13.4 140.7

Since neither Daisy nor FPTaylor support procedure calls, we inline all
procedure calls and call the tools on the fully inlined code. Just like for Hugo, we
report running times for computing roundoff error bounds for all procedures in a
case study. For Daisy, we prepare one file with all procedures, for FPTaylor we
sum up the running times for analyzing each procedure separately, since FPTaylor
supports only a single expression per input file (we report the running times for
individual procedures in the appending in Table 4). We ran each experiment
three times and report the average runtimes.

The results of this experiment are shown in Table 3. As before, we only show
the error bounds for procedures containing procedure calls. For the XL versions
we only report the error of the additional procedure, and for the XS version we
do not report errors, since this version has a procedure removed.

Hugo is faster than Daisy and FPTaylor on all but the complexXS case study,
and often significantly so. For matrix, Hugo is 2.6x and 138x faster than Daisy and
FPTaylor, respectively. For matrixXL, the improvements are 4.1x and 227x. These
improvements come with error bounds that are within an order of magnitude of
those of Daisy and FPTaylor.

FPTaylor is not able to compute errors for two of the longest procedures of
complex, reporting infinite errors using the default settings. We changed FPTaylor’s
configuration for these two procedures to be more precise (evaluating second-order
terms with a more accurate procedure), however, with this setting FPTaylor
timed out, i.e. it took more than one hour for each procedure.

For the complexXS case study, which does not include the two longest procedures,
Hugo is slower than both Daisy and FPTaylor. This is not unexpected, as

Are we there yet?

Rounding error analysis

Are we there yet?

Rounding error analysis

for (short) pure arithmetic computations: FPTaylor [1], Daisy [2], PRECiSA [3]

[1] Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. A. Solovyev, C. Jacobsen, Z. Rakamaric, G. Gopalakrishnan. FM’15
[2] Daisy - Framework for Analysis and Optimization of Numerical Programs (Tool Paper), TACAS’18
[3] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAI’18

Are we there yet?

Rounding error analysis

for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

conditionals [1, 2]

[1] Towards a Compiler for Reals. E. Darulova, V. Kuncak, TOPLAS’17
[2] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAI’18

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 ...
 else
 ...
}

real-valued and floating-point executions
may/will diverge

Are we there yet?

Rounding error analysis

for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

conditionals

loops [1, 2, 3]

[1] Towards a Compiler for Reals. E. Darulova, V. Kuncak, TOPLAS’17
[2] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAI’18
[3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS’23

1.1. Challenges in Analysis and Verification

0 100 200 300 400 500
−6

−4

−2

0

2

4

6
Jupiter orbiting the Sun

time step

0 100 200 300 400 500
−3

−2

−1

0

1

2

3x 10−13

x
absolute error

Figure 1.2 – Absolute actual round-off errors computed by comparison against quad double
precision arithmetic in 300 iterations of a simple gravity simulation. Note that the actual error
grows with the iteration number.

Conditional branches introduce discontinuities which can, in the presence of errors, result
in diverging behavior between the ideal real-valued computation and its finite-precision
implementation. We call the resulting difference discontinuity error. For example, suppose
that we want to approximate

p
(1+x) for small x:

if (x < 1e-4) 1 + 0.5 * x

else sqrt(1 + x)

If our application can tolerate a less accurate square root computation, the approximation is
preferable as it is significantly faster. If in the preceding computation x has accumulated an er-
ror, and the finite-precision value is for example 0.00099 instead of 0.00012, the finite-precision
computation will take the less accurate if branch, even though the ideal real computation
would have taken the else-branch. Since the computation of this conditional is not continuous,
the difference between the real and the finite-precision result due to round-offs is further
exacerbated by the conditional. Quantifying discontinuity errors is hard due to nonlinearity
and because the two branches of the conditional usually share variables and are thus tightly
correlated.

Loops are also a common feature in numerical programs. In forward computations such as
numerical integration of differential equations round-off errors grow in general unboundedly.
As an illustration, consider a simulation of the planet Jupiter orbiting the Sun, for which we
plot the absolute errors of one of the coordinates, x, in Figure 1.2. While the values of x stay
bounded, the errors grow, making it impossible to find a constant absolute error bound. For

5

Are we there yet?

Rounding error analysis

for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

conditionals

loops

scalability [1, 2, 3]

[1]Scalable yet Rigorous Floating-point Error Analysis. A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha SC’20
[2] A Two-Phase Approach for Conditional Floating-Point Verification. D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis. TACAS’21
[3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS’23

double heat1d(double (*xm)[N], double (*xp)[N], double* x0) {
 int i,j;
 for (j=1; j<N; j++) {
 for (i=2; i<(N-j); i++) {
 xm[j][i]=0.25*xm[j-1][i+1]+0.5*xm[j-1][i]+0.25*xm[j-1][i-1];
 xp[j][i]=0.25*xp[j-1][i-1]+0.5*xp[j-1][i]+0.25*xp[j-1][i+1];
 }
 xm[j][0] = 0.25*xm[j-1][1] + 0.5*xm[j-1][0] + 0.25*x0[j-1];
 xp[j][0] = 0.25*xp[j-1][1] + 0.5*xp[j-1][0] + 0.25*x0[j-1];
 x0[j] = 0.25*xm[0][j-1] + 0.5*x0[j-1] + 0.25*xp[0][j-1];
 }
 return x0[N-1];
}

imperative code:

Are we there yet?

Rounding error analysis

for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

conditionals

loops

scalability [1, 2, 3]

[1]Scalable yet Rigorous Floating-point Error Analysis. A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha SC’20
[2] A Two-Phase Approach for Conditional Floating-Point Verification. D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis. TACAS’21
[3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS’23

def heat1d(ax: Vector): Real = {
 require(1.0 <= ax && ax <= 2.0 && ax.size(33))

 if (ax.length() <= 1) {
 ax.head
 } else {
 val coef = Vector(List(0.25, 0.5, 0.25))
 val updCoefs = ax.slideReduce(3,1)(v => (coef*v).sum())
 heat1d(updCoefs)
 }
}

analysis of our functional DSL scales better [3]:

Are we there yet?

Rounding error analysis

for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

conditionals

loops

scalability

Deductive verification (in KeY)

with automation: absence of runtime errors

???

