Recent Advances in Floating-point Static Analyses (in a very general sense)

Eva Darulova Uppsala university

Finite precision

• models of the physical world, (control) algorithms, etc. assume real-valued arithmetic

 $x_1, x_2, x_3 \in \mathbb{R}$ $-x_1 * x_2 - 2x_2x_3 - x_1 - x_3$

- exact computation not always feasible (e.g. for sine) or is expensive
- computer implementations need finite precision, e.g. floating-point arithmetic

def rigidBody(x1: Double, x2: Double, x3: Double): Double = -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float = -x1 * x2 - 2 * x2 * x3 - x1 - x3

Finite precision

• computer implementations need **finite precision**, e.g. floating-point arithmetic

• finite precision introduces **rounding errors**

def rigidBody(x1: Double, x2: Double, x3: Double): Double = -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float = -x1 * x2 - 2 * x2 * x3 - x1 - x3


```
scala> rigidBody(0.1, 0.1, 0.1)
val res0: Double = -0.23
scala> rigidBodyf(0.1f, 0.1f, 0.1f)
val res1: Float = -0.22999999
scala> rigidBody(0.1f, 0.1f, 0.1f)
val res2: Double = -0.2300000387430192
scala> res0 + res0 + res0
```


Finite precision

- computer implementations need **finite precision**, e.g. floating-point arithmetic
- finite precision introduces **rounding errors**
- rounding breaks mathematical identities

def rigidBody(x1: Double, x2: Double, x3: Double): Double = -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float = -x1 * x2 - 2 * x2 * x3 - x1 - x3

def rigidBodyf2(x1: Float, x2: Float, x3: Float): Float = (-x1 * x2 - (x1 + x3)) - (x2 * 2 * x3)


```
scala> rigidBody(0.1, 0.1, 0.1)
val res0: Double = -0.23
```

scala> rigidBodyf(0.1f, 0.1f, 0.1f) val res1: Float = -0.22999999

scala> rigidBody(0.1f, 0.1f, 0.1f) val res2: Double = -0.2300000387430192

```
scala> res0 + res0 + res0
```

```
scala> rigidBodyf2(0.1f, 0.1f, 0.1f)
val res4: Float = -0.23
```

scala> rigidBody(0.1, 0.1, 0.1/0.0) val res4: Double = -Infinity

Dealing with errors

Xavier Leroy:

"It makes us nervous to fly an airplane since we know they **OPERATE** using floating-point arithmetic."

Verified squared: does critical software deserve verified tools? Talk at POPL, 2011.

Need: Rigorous correctness guarantees

Are we there yet?

Spoiler: No

PRECISE + PRECISE = SLIGHTLY LESS NUMBER + NUMBER = PRECISE NUMBER
PRECISE × PRECISE = SLIGHTLY LESS NUMBER * NUMBER = PRECISE NUMBER
PRECISE NUMBER + GARBAGE = GARBAGE
PRECISE \times GARBAGE = GARBAGE
$\sqrt{GARBAGE} = LESS BAD$ GARBAGE
(GARBAGE) ² = WORSE GARBAGE
$\frac{1}{N}\sum_{n=1}^{N} \left(\begin{array}{c} \text{NPIECES OF STATISTICALLY} \\ \text{NDEPENDENT GARBAGE} \end{array} \right) = \begin{array}{c} \text{BETTER} \\ \text{GARBAGE} \end{array}$
(PRECISE) GARBAGE = MUCH WORSE NUMBER) = GARBAGE
GARBAGE - GARBAGE = MUCH WORSE GARBAGE
PRECISE NUMBER MUCH WORSE GARBAGE - GARBAGE = GARBAGE, POSSIBLE DIVISION BY ZERO
$GARBAGE \times O = \frac{PRECISE}{NUMBER}$

This talk: where are we and why is it so hard?

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

This talk: where are we and why is it so hard?

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

IEEE 754 floating-point standard

$m \cdot 2^e$ **Representation:**

- base 2 (base 10 also possible)
- m: mantissa, |m| < 1
- e: exponent

Arithmetic operations: computed as if with real arithmetic and then rounded

- Different rounding modes: **to nearest** (default), to 0, to +/- Infinity
- Abstraction for arithmetic operations and rounding to nearest:

$$\tilde{op} = op(1+e) + e$$

precision	m bits	e bits	ϵ	δ
half (16)	11	5	2 ⁻¹¹ ≈ 4.88e-04	2-25
single (32)	24	8	2 ⁻²⁴ ≈ 5.96e-08	2-150
double (64)	53	11	2 ⁻⁵³ ≈ 1.11e-16	2-107

where $|e| \leq \epsilon, |d| \leq \delta$

5

Special values

 $m \cdot 2^e$ Representation of normal values:

Special values: +Infinity, -Infinity, +0.0, -0.0, NaN (Not-a-Number)

- underflow $\rightarrow +0.0 \text{ or } -0.0$
- overflow → Infinity or -Infinity
- 1.0 / 0.0 \rightarrow Infinity
- $sqrt(-42.0) \rightarrow NaN$
- NaN * 0.0 \rightarrow NaN
- NaN == NaN → false

typically, special values signal an error

Consequence of rounding and special values

- Floating-point arithmetic is commutative, but **not associative or distributive:**
 - X + (Y + Z)
 - x * (y * z)
 - x * (y + z)
- Other real-valued identities also do not hold: x / 10
 - x == y

When analyzing code, need to **follow exact order of computation**.

$$! = (x + y) + z$$

$$! = (x * y) * z$$

$$! = (x * y) + (x * z)$$

$$! = x * 0.1$$

$$\Rightarrow 1/x = 1/y$$

X != X

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

joint work with Rosa Abbasi, Mattias Ulbrich, Jonas Schiffl, Wolfgang Ahrendt

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

Goal: prove absence of *runtime errors* and *special values*

```
public class Circuit {
    double maxVoltage;
    double frequency;
    double resistance;
    double inductance;
    public Complex computeImpedance() {
        return new Complex(resistance, 2.0 * Math.PI * frequency * inductance);
    public Complex computeCurrent() {
        return new Complex(maxVoltage, 0.0).divide(computeImpedance());
    public double computeInstantCurrent(double time) {
        Complex current = computeCurrent();
        double maxCurrent = Math.sqrt(current.getRealPart() * current.getRealPart() +
         current.getImaginaryPart() * current.getImaginaryPart());
        double theta = Math.atan(current.getImaginaryPart() / current.getRealPart());
        return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);
```

in Java programs

Does the program overflow?

KeY workflow

```
public class PostInc {
   public PostInc rec;
   public int x, y;
   /*@ public invariant rec.x >= 0 && rec.y >= 0; @*/
   /*@ public normal_behaviour
     @ requires true;
     @ ensures rec.x == \old(rec.y) + 1 && rec.y == \old(rec.y) + 1;
     @*/
   public void postInc() {
        rec.x = rec.y++;
```



```
self.rec.y = 1 + self.rec.y
```

Basic extension for floating-points

Basic extension for floating-points

```
public class Complex {
                                                       Annotated Program
    double realPart;
    double imaginaryPart;
    /*@ public normal_behaviour
       requires realPart == 0.0 && imaginaryPart == 0.0;
      b
        ensures \fp_nan(\result.realPart) && \fp_nan(\result.imaginaryPart);
      Ø
     @*/
    public Complex reciprocal() {
      double scale = realPart * realPart + imaginaryPart * imaginaryPart;
       return new Complex(realPart / scale, -imaginaryPart / scale);
```


translate to **SMT-lib**

floating-points

taclet rules application

doubleIsNaN(divDoubleIEEE(RNE, self.realPart, addDoubleIEEE(RNE, mulDoubleIEEE(RNE, self.realPart, self.realPart) mulDoubleIEEE(RNE, self.imaginaryPart, self.imaginaryPart)))

.....

Basic extension

. . .

Library functions

public class Circuit {

double maxVoltage;

double frequency;

double resistance;

double inductance;

- axiomatize them
 - in SMT queries, or
 - in KeY as taclet rules
- /*@ public normal_behaviour @ requires this.maxVoltage > 1.0 && this.maxVoltage < 12.0 &&</pre> @ this.frequency > 1.0 && this.frequency < 100.0 && @ time > 0.0 && time < 300.0; @ ensures \fp_nice(\result); @*/ public double computeInstantVoltage(double time) { return maxVoltage *(Math.cos().0 * Math.PI * frequency * time);

• encode transcendental functions as **uninterpreted functions**

Axioms

- capture **high-level properties** of library functions
- comply with the specifications in the IEEE 754 standard
- e.g. encode value ranges and allow one to show that a function application is **not NaN**

/*@ public normal_behaviour @ requires this.maxVoltage > 1.0 && this.maxVoltage < 12.0 &&</pre> this.frequency > 1.0 && this.frequency < 100.0 && **D** time > 0.0 && time < 300.0; **b** @ ensures \fp_nice(\result); @*/ public double computeInstantVoltage(double time) { return maxVoltage * Math.cos(2.0 * Math.PI * frequency * time);

```
Axiom: !fp_nan(a) \land !fp_infinite(a) \rightarrow -1.0 \leq cos(a) \leq 1.0
```


Axiomatization

in SMT queries

function definitions and axioms are added to the SMT-LIB translation axioms are expressed as **quantified** floating-point formulas

via taclet rules in KeY

axioms are encoded as taclets in KeY

fully automated, or user can choose which rule to apply

no quantified formulas

find cos(a)

(assert (forall ((a Float64)) (=> (and (not (fp.isNaN a)) (not (fp.isInfinite a))) (and (fp.leq (cosDouble a)) (fp #b0 #b0111111111 #b0000...000000)) (fp.geq (cosDouble a) (fp #b1 #b01111111111 #b0000...000000))))))

add \neg fp_nan(a) $\land \neg$ fp_infinite(a) $\rightarrow -1.0 \leq \cos(a) \leq +1.0 \Longrightarrow$

The absence of special values using fp_nan, fp_infinite, fp_nice

```
/*@ public normal_behavior
    requires \fp_nice(arg0.x) && \fp_nice(arg0.y) && \fp_nice(arg1) && \fp_nice(arg2);
  b
  Ø
  @ also
  @ public normal_behavior
    requires -5.53 <= arg0.x && arg0.x <= -3.38 && -5.53 <= arg0.y && arg0.y <= -3.38 &&
  Ø
  Ø
       3.0003001 < arg1 && arg1 <= 4.0024 && -6.4000003 < arg2 && arg2 <= 3.0001;
  ()
  Ø
  @*/
public Rectangle scale(Rectangle arg0, double arg1, double arg2){
    Area v1 = new Area(arg0);
    AffineTransform v2 = AffineTransform.getScaleInstance(arg1, arg2);
    Area v3 = v1.createTransformedArea(v2);
    Rectangle v4 = v3.getRectangle2D();
    return v4;
```


The absence of special values with **transcendentals**

```
public class Circuit {
   double maxVoltage, frequency, resistance, inductance;
   // ...
   /*@ public normal behavior
      @ 0.0 < time && time < 300.0;
      @ ensures !\fp_nan(\result) && !\fp_infinite(\result);
      @*/
    public double instantCurrent(double time) {
       Complex curr = computeCurrent();
       double maxCurrent = Math.sqrt(curr.getRealPart() * curr.getRealPart() +
            curr.getImaginaryPart() * curr.getImaginaryPart());
        double theta = Math.atan(curr.getImaginaryPart() / curr.getRealPart());
       return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);
```

@ requires 1.0<this.maxVoltage && this.maxVoltage<12.0 && 1.0<this.frequency && this.frequency<100.0 && @ 1.0<this.resistance && this.resistance<50.0 && 0.001<this.inductance && this.inductance<0.004 &&

need to use fp.sqrt

axioms as taclet rules

Functional properties that are expressible in floating-point arithmetic

```
public class Rotation {
    final static double cos90 = 6.123233995736766E-17;
   final static double sin90 = 1.0;
        double x = vec[0] * cos90 - vec[1] * sin90;
        double y = vec[0] * sin90 + vec[1] * cos90;
        return new double[]{x, y};
    /*@ public normal_behaviour
        requires (\forall int i; 0 <= i && i < vec.length;
        vec[i] > 1.0 && vec[i] < 2.0) && vec.length == 2;</pre>
      b
        ensures \result[0] < 1.0E-15 \& \result[1] < 1.0E-15;
      @*/
    public static double[] computeError(double[] vec) {
        double[] temp = rotate(rotate(rotate(rotate(vec))));
```


Loop invariants

invariant generated by external tool [1] validated by KeY

[1] Counterexample- and Simulation-Guided Floating-Point Loop Invariant Synthesis. A. Izycheva, E. Darulova and Helmut Seidl. SAS'20

```
/*@ public normal_behavior
  @ requires 0.0f <= u && u <= 0.0f && 2.0f <= v && v <= 3.0f;
  @ diverges true;
  @*/
public float pendulum-approx(float u, float v) {
    /*@ loop_invariant -1.1f <= u && u <= 1.2f &&</pre>
      @ -3.2f <= v && v <= 3.1f &&
      (-0.11f^*u) + (0.01f^*v) + (1.0f^*u^*u) + (0.03f^*u^*v)
      (0.12f^*v^*v) <= 1.15f;
      @*/
    while (true) {
        u = u + 0.01f * v;
        v = v + 0.01f * (-0.5f * v - 9.81f *)
            (u - (u * u * u) / 6.0f +
            (u * u * u * u * u) / 120.0f));
    return u;
```


Solver performance

Running times for valid goals 300.0 100.0 **Z3** Time (s) (Log10 Scale) 10.0 -MathSAT 1.0 -0.1

Goals (ordered by run time, without quantifiers)

- Best running time: CVC4
- Most goals validated: MathSAT

Floating-point solvers have improved!

Axiomatization performance

Experiment	Quantified Axioms	# Goals	CVC4		Z3		MathSAT	
			# Goals Decided	Avg.	# Goals Decided	Avg.	# Goals Decided	Avg.
Axioms in SMT	\checkmark	10	9	33.2	4	63.4	-	-
Axioms as Taclets	X	10	10	33.4	5	74.2	8	0.9

- axiomatization in KeY avoids quantified formulas: both CVC4 and Z3 prove more goals
- fp.sqrt vs axiomatization:

axiomatization mostly cheaper, but weaker

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis [1] (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

[1] Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. A. Solovyev, C. Jacobsen, Z. Rakamaric, G. Gopalakrishnan. FM'15

Bounding rounding errors

real-valued specification: floating-point implementation:

Goal: compute absolute rounding error bound:

 $\max_{y,z\in Y,Z} \left| f(y, y) \right|$

- main challenge: accurate bounds
- over-approximation of the true errors; impossible to get exact errors in general
- (too) complex to reason about: combines real-valued and floating-point reasoning cannot be simply phrased as SMT-query
- (aside: easier than relative errors)

 $f(y, z) = y^2 + z^2$ where $y \in [10.0, 20.0], z \in [20.0, 80.0]$ $\tilde{f}(\tilde{y}, \tilde{z}) = \tilde{y} * \tilde{y} + \tilde{z} * \tilde{z}$ where $\tilde{y} = y + u_y, \ \tilde{z} = z + u_z$

$$(z,z) - \tilde{f}(\tilde{y},\tilde{z})$$

Abstracting floating-point arithmetic

too complex:

$$\max_{y,z\in Y,Z} \left| f(y,z) - \tilde{f}(\tilde{y},\tilde{z}) \right|$$

use abstraction of floating-point arithmetic

to compute abstraction $\hat{f}(y, z, \mathbf{e}, \mathbf{d}) = \left(((y(1+e_1)+d_1)^2(1+e_2)+d_2) + ((z(1+e_3)+d_3)^2(1+e_4)+d_4) \right) (1+e_5)$

- now only real-valued
- but still too complex to reason about automatically
- apply Taylor approximation; standard approach in maths and physics to simplify equations

$$f(y,z) = y^2 +$$

$\tilde{op} = op(1+e) + d$ where $|e| \le \epsilon, |d| \le \delta$

Taylor approximation

general first-order Taylor approximation:

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{k} \frac{\partial f}{\partial x_i} (\mathbf{a})(x_i - a_i) + 1/2 \sum_{i,j=1}^{k} \frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{p})(x_i - a_i)(x_j - a_j)$$

choose suitable point

compute Taylor approximation around (y, z, 0, 0) $\hat{f}(y, z, \mathbf{e}, \mathbf{d}) = \hat{f}(y, z, \mathbf{0}, \mathbf{0}) + \left. \frac{\partial \hat{f}}{\partial e_1} \right|_y$ $= f(y, z) \quad \left. \frac{\partial \hat{f}}{\partial d_1} \right|_z$

approximate bound on roundoff error: $\max_{y,z\in I} \left| \hat{f}(y,z,\mathbf{e},\mathbf{d}) - f(y,z) \right| = \max_{y,z\in I} \left| \left| \frac{\partial \hat{f}}{\partial e_1} \right|$

first-order derivative

remainder bounds error

$$e_{1} + \frac{\partial \hat{f}}{\partial e_{2}} \bigg|_{y,z,\mathbf{0}} e_{2} + \frac{\partial \hat{f}}{\partial e_{3}} \bigg|_{y,z,\mathbf{0}} e_{3} + \frac{\partial \hat{f}}{\partial d_{2}} \bigg|_{y,z,\mathbf{0}} d_{2} + R_{2}(y,z,\mathbf{e},\mathbf{d})$$

$$y,z,\mathbf{0} = \frac{\partial \hat{f}}{\partial d_{2}} \bigg|_{y,z,\mathbf{0}} d_{2} + R_{2}(y,z,\mathbf{e},\mathbf{d})$$

$$\left| \begin{array}{c} e_1 + \ldots + \left. \frac{\partial \hat{f}}{\partial d_2} \right|_{y,z,\mathbf{0}} d_2 + R_2(y,z,\mathbf{e},\mathbf{d}) \\ y_{y,z,\mathbf{0}} \end{array} \right|_{y,z,\mathbf{0}} d_2 + R_2(y,z,\mathbf{e},\mathbf{d})$$

Bounding rounding errors

$$\max_{y,z\in I} \left| \hat{f}(y,z,\mathbf{e},\mathbf{d}) - f(y,z) \right| = \max_{y,z\in I} \left| \left| \frac{\partial \hat{f}}{\partial e_1} \right|_{y,z,\mathbf{0}} e_1 + \ldots + \left| \frac{\partial \hat{f}}{\partial d_2} \right|_{y,z,\mathbf{0}} d_2 + R_2(y,z,\mathbf{e},\mathbf{d}) \right|$$

- compute floating-point abstraction
- compute derivatives symbolically
- bound derivates over interval input domain
 - with interval arithmetic or branch-and-bound
- does **not** support function calls **modularly** requires *inlining* of functions

abstraction/simplification

• supports arithmetic and transcendental functions (as library functions, but derivatives are well-defined)

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis

Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

joint work with Rosa Abbasi

Modular rounding error analysis

- $g(x) = x^2$ where $x \in [0.0, 100.0]$ f(y,z) = g(y) + g(z) where $y \in [10.0, 20.0], z \in [20.0, 80.0] \longrightarrow y, z \in [0.0, 100.0]$
- consider simplified case first: no input errors
- **step 1:** compute an **error specification** for each procedure

$$\max_{x \in I} |f(y)|$$

- goal: abstract enough but not too much

constant error bound

looses too much accuracy

• step 2: instantiate error specifications for each procedure at their call-sites with appropriate contexts

pre-compute only derivatives modest **performance**

Step 1: Roundoff error specification

- $g(x) = x^2$ where $x \in [0.0, 100.0]$ f(y, z) = g(y) + g(z) where $y \in [10.0, 20.0], z \in [20.0, 80.0]$
- extend rounding error model with procedures: replaced with (real-valued) symbolic variables

$$\begin{split} \hat{g}(x,e_1,d_1) &= x^2(1+e_1) + d_1 \\ \hat{f}(y,z,e_2,\beta_g(y),\beta_g(z)) &= \begin{pmatrix} g(y) + \beta_g(y) + g(z) + \beta_g(z) \end{pmatrix} (1+e_2) \\ & \swarrow \\ & \land \\ \\ & \land \\ & : \\ &$$

• values of symbolic variables only needed at instantiation time

- depends on input parameter

Step 1: Roundoff error abstraction

$$\hat{g}(x, e_1, d_1) = x^2(1 + e_1) + d_1$$
$$\hat{f}(y, z, e_2, \beta_g(y), \beta_g(z)) = \left(g(y) + \beta_g(y) + g(z) + \beta_g(z)\right)(1 + e_2)$$

• proceed as before with Taylor approximation:

$$\beta_{g} = \frac{\partial \hat{g}}{\partial e_{1}} \Big|_{x,\mathbf{0}} e_{1} + \frac{\partial \hat{g}}{\partial d_{1}} \Big|_{x,\mathbf{0}} d_{1}$$

$$\beta_{f} = \frac{\partial \hat{f}}{\partial e_{2}} \Big|_{y,z,\mathbf{0}} e_{2} + \frac{\partial \hat{f}}{\partial \beta_{g}(y)} \Big|_{y,z,\mathbf{0}} \beta_{g}(y) + \frac{\partial \hat{g}}{\partial \beta_{g}(y)} \int_{y,z,\mathbf{0}} f_{g}(y) d_{g}(y) d_{g}(y)$$

• pre-evaluate part of the Taylor approximations at abstraction stage already

 $\frac{\partial \hat{f}}{\partial_g(z)} \bigg|_{y,z,\mathbf{0}} \beta_g(z) + R_2(y,z,e_2,\beta_g(y),\beta_g(z))$

symbolically

Step 2: Instantiation

• instantiate error terms using interval analysis recursively

$$\beta_g = \epsilon \max |x^2| + \delta,$$

$$\beta_f = \epsilon \max |g(y) + g(z)| + (1 + 2\epsilon) \max |\beta_g(y)| + \delta,$$

- also check that intervals of error specifications are respected
- tradeoff: parts of β_9 have been computed with (potentially) wider ranges, but only once
- correctness: inlining error specs without pre-computation yields the same error expression

Input errors

• use triangle inequality to split error:

$$|f(\mathbf{x}) - \tilde{f}(\tilde{\mathbf{x}})| = |f(\mathbf{x}) - f(\tilde{\mathbf{x}}) + f(\tilde{\mathbf{x}}) - \tilde{f}(\tilde{\mathbf{x}})| \le \underbrace{|f(\mathbf{x}) - f(\tilde{\mathbf{x}})|}_{\text{propagation error}} + \underbrace{|f(\tilde{\mathbf{x}}) - \tilde{f}(\tilde{\mathbf{x}})|}_{\text{round-off error}}$$

• compute error specification in two parts:

$$\max_{x \in I} |g(x) - \tilde{g}(\tilde{x})| \le |\gamma_g| + |\beta_g|$$
$$\max_{y, z \in J, K} |f(y, z) - \tilde{f}(\tilde{y}, \tilde{z})| \le |\gamma_f| + |\beta_f|$$

$$\gamma_g = g(\tilde{x}) - g(x)$$
 whe
 $\gamma_f = f(\tilde{y}, \tilde{z}) - f(y, z)$

• compute Taylor approximation, but w.r.p. inputs

here $\tilde{x} = x + u_x$ where $\tilde{y} = y + u_y, \tilde{z} = z + u_z$

Evaluation

benchmark	# top level	<pre># procedure calls</pre>	# arithmetic ops	# arith. ops inlined	
matrix	5	15	26	371	
matrixXL	6	33	44	911	
matrixXS	4	6	17	101	
complex	15	152	98	699	
complexXL	16	181	127	1107	
complexXS	13	136	72	464	

- matrix: library procedures on 3×3 matrices with determinant and Cramer's rule
- complex: library procedures on complex numbers, used for computing properties of RL circuits
- XL/XS: larger or smaller versions

Performance-Accuracy wrt. state-of-the-art

case study	procedure	Hugo		Daisy		FPTaylor	
	procedure	err	time(s)	error	time(s)	err	time(s)
matrix	solveEquationX	4.14e-15		1.07e-15		3.83e-16	
	solveEquationY	4.68e-15	30	1.55e-15	10.5	6.11e-16	539.7
	solveEquationZ	5.16e-15	0.0	1.90e-15		4.96e-16	
	solveEquationsVector	4.73e-15		2.09e-16		1.83e-16	
matrixXL	solveEquationsVectorXL	4.78e-15	5.9	2.53e-16	24.2	2.27e-16	1342.0
matrixXS			3.5		4.0		158.9
complex	computeCurrentRe	6.12e-10		4.90e-10		9.65e-14	
	computeCurrentIm	6.71e-10		2.46e-11		2.42e-13	
	computeInstantCurrent	3.34e-03		5.57e+01	439.1	_	
	approxEnergy	1.00e-01	239.7	1.67e+03		_	ТО
	computeRadiusVector	1.47e-11		6.20e-14		7.26e-14	
	computeDivideVector	2.39e-10		8.26e-14		3.85e-14	
	compute Reciprocal Radius V.	3.12e-14		3.89e-14		4.67e-15	
complexXL	approxEnergyXL	2.00e-01	969.3	3.34e+03	1315.1	_	ТО
complexXS			181.7		13.4		140.7

Rounding error analysis

Rounding error analysis

Image for (short) pure arithmetic computations: FPTaylor [1], Daisy [2], PRECiSA [3]

[1] Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. A. Solovyev, C. Jacobsen, Z. Rakamaric, G. Gopalakrishnan. FM'15 [2] Daisy - Framework for Analysis and Optimization of Numerical Programs (Tool Paper), TACAS'18 [3] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAI'18

Rounding error analysis


```
def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
  require(-15.0 \le x1 \le 15 \& \& -15.0 \le x2 \le 15.0 \& \& -15.0 \le x3 \le 15)
  val res = -x1*x2 - 2*x2*x3 - x1 - x3
  if (res <= 0.0) •
    . . .
  else
    . . .
```

[1] Towards a Compiler for Reals. E. Darulova, V. Kuncak, TOPLAS'17 [2] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAI'18

real-valued and floating-point executions may/will diverge

Rounding error analysis

If for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA **C** conditionals **D** loops [1, 2, 3]

[1] Towards a Compiler for Reals. E. Darulova, V. Kuncak, TOPLAS'17 [2] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAI'18 [3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS'23

Rounding error analysis

[1]Scalable yet Rigorous Floating-point Error Analysis. A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha SC'20 [2] A Two-Phase Approach for Conditional Floating-Point Verification. D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis. TACAS'21 [3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS'23

```
imperative code:
double heat1d(double (*xm)[N], double (*xp)[N], double* x0) {
 int i,j;
 for (j=1; j<N; j++) {
   for (i=2; i<(N-j); i++) {
     xm[j][i]=0.25*xm[j-1][i+1]+0.5*xm[j-1][i]+0.25*xm[j-1][i-1];
     xp[j][i]=0.25*xp[j-1][i-1]+0.5*xp[j-1][i]+0.25*xp[j-1][i+1];
   xm[j][0] = 0.25*xm[j-1][1] + 0.5*xm[j-1][0] + 0.25*x0[j-1];
   xp[j][0] = 0.25*xp[j-1][1] + 0.5*xp[j-1][0] + 0.25*x0[j-1];
   x0[j] = 0.25*xm[0][j-1] + 0.5*x0[j-1] + 0.25*xp[0][j-1];
 return x0[N-1];
```


Rounding error analysis

- If for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA
- **C** conditionals
- loops
- **D** scalability [1, 2, 3]

[1]Scalable yet Rigorous Floating-point Error Analysis. A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha SC'20 [2] A Two-Phase Approach for Conditional Floating-Point Verification. D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis. TACAS'21 [3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS'23

analysis of our functional DSL scales better [3]:

```
def heat1d(ax: Vector): Real = {
  require(1.0 <= ax && ax <= 2.0 && ax.size(33))
 if (ax.length() <= 1) {</pre>
    ax.head
   else {
    val coef = Vector(List(0.25, 0.5, 0.25))
    val updCoefs = ax.slideReduce(3,1)(v => (coef*v).sum())
   heat1d(updCoefs)
```


Rounding error analysis

- for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA
- **C** conditionals
- loops
- **D** scalability

Deductive verification (in KeY)

PRECISE + PRECISE = SLIGHTLY LESS NUMBER + NUMBER = PRECISE NUMBER PRECISE × PRECISE = SLIGHTLY LESS NUMBER × NUMBER = PRECISE NUMBER PRECISE NUMBER + GARBAGE = GARBAGE PRECISE NUMBER × GARBAGE = GARBAGE $\sqrt{\text{GARBAGE}} = \frac{\text{LESS BAD}}{\text{GARBAGE}}$ $(GARBAGE)^2 = WORSE GARBAGE$ $\frac{1}{N}\sum_{n}\left(N \text{ PIECES OF STATISTICALLY}\right) = \frac{1}{2} \text{ BETTER}$ (PRECISE) GARBAGE = MUCH WORSE NUMBER MUCH WORSE GARBAGE - GARBAGE = MUCH WORSE PRECISE NUMBER = = GARBAGE, POSSIBLE GARBAGE - GARBAGE DIVISION BY ZERO PRECISE NUMBER $GARBAGE \times () =$

