Recent Advances in Floating-point Static Analyses

Eva Darulova

Finite precision

- models of the physical world, (control) algorithms, etc. assume real-valued arithmetic

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3} \in \mathbb{R} \\
& -x_{1} * x_{2}-2 x_{2} x_{3}-x_{1}-x_{3}
\end{aligned}
$$

- exact computation not always feasible (e.g. for sine) or is expensive
- computer implementations need finite precision, e.g. floating-point arithmetic

```
def rigidBody(x1: Double, x2: Double, x3: Double): Double =
    -x1 * x2 - 2 * x2 * x3 - x1 - x3
```

def rigidBodyf(x1: Float, $x 2$: Float, $x 3$: Float): Float =
$-x 1^{*} x 2-2^{*} \times 22^{*} x 3-x 1-x 3$

Finite precision

- computer implementations need finite precision, e.g. floating-point arithmetic
- finite precision introduces rounding errors

```
def rigidBody(x1: Double, x2: Double, x3: Double): Double =
    -x1 * x2 - 2 * x2 * x3 - x1 - x3
```

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float =
-x1 * x2 - $2^{*} x 2$ * x3 - x1 - x3

```
cala> rigidBody(0.1, 0.1, 0.1)
val res0: Double = -0.23
    rigidBodyf(0.1f, 0.1f, 0.1f)
val res1: Float = -0.22999999
    rigidBody(0.1f, 0.1f, 0.1f)
val res2: Double = -0.23000000387430192
scala> res0 + res0 + res0
val res3: Double = -0.6900000000000001
```


Finite precision

- computer implementations need finite precision, e.g. floating-point arithmetic
- finite precision introduces rounding errors
- rounding breaks mathematical identities

```
def rigidBody(x1: Double, x2: Double, x3: Double): Double =
    -x1 * x2 - 2 * x2 * x3 - x1 - x3
```

def rigidBodyf(x1: Float, x2: Float, x3: Float): Float =
-x1 * x2 - $2^{*} x 2$ * x3 - x1 - x3
def rigidBodyf2(x1: Float, x2: Float, x3: Float): Float =
$\left(-x 1^{*} \times 2-(x 1+x 3)\right)-\left(x ~^{*} 2^{*} x 3\right)$
scala> rigidBody(0.1, 0.1, 0.1)
val res0: Double $=-0.23$
scala> rigidBodyf(0.1f, 0.1f, 0.1f)
val res1: Float = -0.22999999
scala> rigidBody(0.1f, 0.1f, 0.1f)
val res2: Double = -0.23000000387430192
scala> res0 + res0 + res0
val res3: Double = -0.6900000000000001
rigidBodyf2(0.1f, 0.1f, 0.1f)
val res4: Float $=-0.23$
rigidBody(0.1, 0.1, 0.1/0.0)
val res4: Double = -Infinity

Dealing with errors

Xavier Leroy:

"It makes us nervous to fly an airplane since we know they OPERATE using floating-point arithmetic."
Verified squared: does critical software deserve verified tools?
Talk at POPL, 2011.

Need: Rigorous correctness guarantees

Are we there yet?

Spoiler: No

This talk: where are we and why is it so hard?

Background on floating-point arithmetic (real quick)

Floating-points in KeY
Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis
Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

This talk: where are we and why is it so hard?

Background on floating-point arithmetic (real quick)

Floating-points in KeY
Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis
Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

IEEE 754 floating-point standard

Representation: $m \cdot 2^{e}$

- base 2 (base 10 also possible)
- m: mantissa, $|m|<1$
- e: exponent

precision	m bits	e bits	$\boldsymbol{\epsilon}$	δ
half (16)	11	5	$2^{-11} \approx 4.88 \mathrm{e}-04$	2^{-25}
single (32)	24	8	$2^{-24} \approx 5.96 e-08$	2^{-150}
double (64)	53	11	$2^{-53} \approx 1.11 \mathrm{e}-16$	2^{-1075}

Arithmetic operations: computed as if with real arithmetic and then rounded

- Different rounding modes: to nearest (default), to 0 , to +/- Infinity
- Abstraction for arithmetic operations and rounding to nearest:

$$
\tilde{o p}=o p(1+e)+d \quad \text { where }|e| \leq \epsilon,|d| \leq \delta
$$

Special values

Representation of normal values: $m \cdot 2^{e}$

Special values: +Infinity, -Infinity, +0.0, -0.0, NaN (Not-a-Number)

- underflow $\rightarrow+0.0$ or -0.0
- overflow \rightarrow Infinity or -Infinity
- 1.0 / $0.0 \rightarrow$ Infinity
typically, special values signal an error
- $\operatorname{sqrt}(-42.0) \rightarrow \mathrm{NaN}$
$\bullet \mathrm{NaN}$ * $0.0 \rightarrow \mathrm{NaN}$
- NaN $==\mathrm{NaN} \rightarrow$ false

Consequence of rounding and special values

Floating-point arithmetic is commutative, but not associative or distributive:

$$
\begin{aligned}
& x+(y+z)!=(x+y)+z \\
& \left.x^{*}\left(y^{*} z\right)!=\left(x^{*} y\right)\right)^{*} z \\
& x^{*}(y+z)!=\left(x^{*} y\right)+\left(x^{*} z\right)
\end{aligned}
$$

Other real-valued identities also do not hold:

$$
\begin{gathered}
x / 10!=x^{*} 0.1 \\
x==y \nRightarrow 1 / x==1 / y \\
x!=x
\end{gathered}
$$

When analyzing code, need to follow exact order of computation.

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY

Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23
joint work with Rosa Abbasi, Mattias Ulbrich, Jonas Schiffl, Wolfgang Ahrendt

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis
Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23

Goal: prove absence of runtime errors and special values

```
public class Circuit {
    double maxVoltage;
    double frequency;
    double resistance;
    double inductance;
    public Complex computeImpedance() {
        return new Complex(resistance, 2.0 * Math.PI * frequency * inductance);
    }
    public Complex computeCurrent() {
        return new Complex(maxVoltage, 0.0).divide(computeImpedance());
    }
    public double computeInstantCurrent(double time) {
        Complex current = computeCurrent();
        double maxCurrent = Math.sqrt(current.getRealPart() * current.getRealPart() +
        current.getImaginaryPart() * current.getImaginaryPart());
        double theta = Math.atan(current.getImaginaryPart() / current.getRealPart());
        return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);
    }
}
```


KeY workflow

```
public void postInc() \{
rec. \(x=\) rec. \(y++\);
\}
public class PostInc {
public class PostInc {
    Annotated Program
    public PostInc rec;
    public PostInc rec;
    public int x, y;
    public int x, y;
    /*@ public invariant rec.x >= 0 && rec.y >= 0; @*/
    /*@ public invariant rec.x >= 0 && rec.y >= 0; @*/
    /*@ public normal_behaviour
    /*@ public normal_behaviour
        @ requires true;
        @ requires true;
        @ ensures rec.x == \old(rec.y) + 1 && Iec.y == \old(rec.y) + 1;
        @ ensures rec.x == \old(rec.y) + 1 && Iec.y == \old(rec.y) + 1;
        @*/
        @*/
    Iec.x = rec.y++;
    Iec.x = rec.y++;
    }
    }


\section*{Basic extension for floating-points}

\(\rightarrow K Z^{Y}\)
taclet rules application
translate to SMT-lib
MathSAT
translate to SMT-


Basic extension for floating-points
```

public class Complex {
double realPart;
double imaginaryPart;
/*@ public normal_behaviour
@ requires realPart == 0.0 \&\& imaginaryPart == 0.0;
@ ensures \fp_nan(\result.realPart) \&\& \fp_nan(\result.imaginaryPart);
@*/
public Complex reciprocal() {
double scale = realPart * realPart + imaginaryPart * imaginaryPart;
return new Complex(realPart / scale, -imaginaryPart / scale);
}
}
Annotated Program
double realPart;
double imaginaryPart;
/*@ public normal_behaviour
@ requires realPart $==0.0$ \&\& imaginaryPart $==0.0$;
@ ensures \fp_nan(\result.realPart) \&\& \fp_nan(\result.imaginaryPart); @*/
public Complex reciprocal() \{

```

translate to SMT-lib
MathSAT Z3

doubleIsNaN(divDoubleIEEE(RNE,
self.realPart, addDoubleIEEE(RNE, mulDoubleIEEE(RNE, self.realPart, self.realPart), mulDoubleIEEE(RNE, self.imaginaryPart, self.imaginaryPart)))

heap etc.

\section*{Basic extension}
```

/*@ public normal_behaviour
@ requires !\fp_nan(d);
@ ensures !\fp_nan(\result);
@ ensures (d < 1.e307 \&\& d > -1.e307) ==>
@ !\fp_infinite(\result);
@*/
public static double twice(double d) {
return 2.0 * d;
}

```
find javaMulDouble(f1,f2)
Replace mulDoubleIEEE(RNE, f1, f2)

1- Predicates
2- Taclet Rules
doubleIsInfinite( mulDoubleIEEE (RNE, 2.0, d)) \(\wedge d<1 . e 307 \wedge d>-(1 . e 307)\)
3- Modular Translator
```

...
(assert (fp.isInfinite (fp.mul RNE
(fp \#b0 \#b10000000000 \#b000)
(u2d ui_d))))

```

\section*{Library functions}
```

```
public class Circuit {
```

```
public class Circuit {
    double maxVoltage;
    double maxVoltage;
    double frequency;
    double frequency;
    double resistance;
    double resistance;
    double inductance;
```

 double inductance;
    ```
```

- axiomatize them

```
- axiomatize them
    in SMT queries, or
    in SMT queries, or
    in KeY as taclet rules
    in KeY as taclet rules
    /*@ public normal_behaviour
    /*@ public normal_behaviour
    @ requires this.maxVoltage > 1.0 && this.maxVoltage < 12.0 &&
    @ requires this.maxVoltage > 1.0 && this.maxVoltage < 12.0 &&
    @ this.frequency > 1.0 && this.frequency < 100.0 &&
    @ this.frequency > 1.0 && this.frequency < 100.0 &&
    @ time > 0.0 && time < 300.0;
    @ time > 0.0 && time < 300.0;
    @ ensures \fp_nice(\result);
    @ ensures \fp_nice(\result);
    @*/
    @*/
    public double computeInstantvolfage(double time) {
    public double computeInstantvolfage(double time) {
        return maxVoltage *Math.cos(l.0 * Math.PI * frequency * time);
        return maxVoltage *Math.cos(l.0 * Math.PI * frequency * time);
    }
    }
}
```

}

```
no SMT-lib equivalent for transcendental functions:
- encode transcendental functions as uninterpreted functions

Axioms
- capture high-level properties of library functions
- comply with the specifications in the IEEE 754 standard
- e.g. encode value ranges and allow one to show that a function application is not NaN
\[
\text { Axiom: !fp_nan(a) } \wedge \text { !fp_infinite(a) } \rightarrow-1.0 \leq \cos (a) \leq 1.0
\]
```

/*@ public normal_behaviour
@ requires this.maxVoltage > 1.0 \&\& this.maxVoltage < 12.0 \&\&
@ this.frequency > 1.0 \&\& this.frequency < 100.0 \&\&
@ time > 0.0 \&\& time < 300.0;
@ ensures \fp_nice(\result);
@*/
public double computeInstantVoltage(double time) {
return maxVoltage * Math.cos(2.0 * Math.PI * frequency * time);
}

```

\section*{Axiomatization}

\section*{in SMT queries}
function definitions and axioms are added to the SMT-LIB translation
axioms are expressed as quantified floating-point formulas
```

```
(assert (forall ((a Float64)) (=>
```

```
(assert (forall ((a Float64)) (=>
(and (not (fp.isNaN a)) (not (fp.isInfinite a)))
(and (not (fp.isNaN a)) (not (fp.isInfinite a)))
(and (fp.leq (cosDouble a)
(and (fp.leq (cosDouble a)
(fp #b0 #b01111111111 #b0000...000000))
(fp #b0 #b01111111111 #b0000...000000))
(fp.geq (cosDouble a)
(fp.geq (cosDouble a)
(fp #b1 #b01111111111 #b0000...000000)) ))))
```

```
(fp #b1 #b01111111111 #b0000...000000)) ))))
```

```

\section*{via taclet rules in KeY}
axioms are encoded as taclets in KeY
fully automated, or user can choose which rule to apply
no quantified formulas
```

find $\cos (a)$
add $\neg f p_{\text {_nan }}(a) \wedge \neg f p_{\text {_infinite }}(a) \rightarrow-1.0 \leq \cos (a) \leq+1.0 \Longrightarrow$

```

\section*{We can now prove}

The absence of special values using fp_nan, fp_infinite, fp_nice
```

/*@ public normal_behavior
@ requires \fp_nice(arg0.x) \&\& \fp_nice(arg0.y) \&\& \fp_nice(arg1) \&\& \fp_nice(arg2)
@ ensures !\fp_nan(\result.x) \&\& !\fp_nan(\result.y) \&\& !\fp_nan(\result.width) \&\& !\fp_nan(\result.height);
@ also
@ public normal_behavior
@ requires -5.53 <= arg0.x \&\& arg0.x <= -3.38 \&\& -5.53 <= arg0.y \&\& arg0.y <= -3.38 \&\&
@ 3.1 < arg0.width \&\& arg0.width <= 3.7332 \&\& 3.0000001 < arg0.height \&\& arg0.height <=4.0004 \& \&
@ 3.0003001 < arg1 \&\& arg1 <= 4.0024 \&\& -6.4000003 < arg2 \&\& arg2 <= 3.0001;
@ ensures !\fp_nan(\result.x) \&\& !\fp_nan(\result.y) \&\& !\fp_nan(\result.width) \&\&!\fp_nan(\result.height);
@*/
public Rectangle scale(Rectangle arg0, double arg1, double arg2){
Area v1 = new Area(arg0);
AffineTransform v2 = AffineTransform.getScaleInstance(arg1, arg2);
Area v3 = v1.createTransformedArea(v2);
Rectangle v4 = v3.getRectangle2D();
return v4;
}

```

\section*{We can now prove}

The absence of special values with transcendentals
```

public class Circuit {
double maxVoltage, frequency, resistance, inductance;
// ...
/*@ public normal_behavior
@ requires 1.0<this.maxVoltage \&\& this.maxVoltage<12.0 \&\& 1.0<this.frequency \&\& this.frequency<100.0 \&\&
@ 1.0<this.resistance \&\& this.resistance<50.0 \&\& 0.001<this.inductance \&\& this.inductance<0.004 \&\&
@ 0.0 < time \&\& time < 300.0;
@ ensures !\fp_nan(\result) \&\& !\fp_infinite(\result);
@*/
public double instantCurrent(double time) {
Complex curr = computeCurrent();
double maxCurrent = Math.sqrt(curr.getRealPart() * curr.getRealPart() +
curr.getImaginaryPart() * curr.getImaginaryPart());
double theta = Math.atan(curr.getImaginaryPart() / curr.getRealPart());
return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);
}
}

We can now prove

Functional properties that are expressible in floating-point arithmetic

```
public class Rotation {
    final static double cos90 = 6.123233995736766E-17;
    final static double sin90 = 1.0;
    public static double[] rotate(double[] vec) { // rotates a 2D vector by 90 degrees
        double x = vec[0] * cos90 - vec[1] * sin90;
        double y = vec[0] * sin90 + vec[1] * cos90;
        return new double[]{x, y};
    }
    /*@ public normal_behaviour
        @ requires (\forall int i; 0 <= i && i < vec.length;
        @ vec[i] > 1.0 && vec[i] < 2.0) && vec.length == 2;
        @ ensures \result[0] < 1.0E-15 && \result[1] < 1.0E-15;
        @*/
    public static double[] computeError(double[] vec) {
        double[] temp = rotate(rotate(rotate(rotate(vec))));
        return new double[] { Math.abs(temp[0] - vec[0]), Math.abs(temp[1] - vec[1])};
    }
}
```


We can now prove

Loop invariants

invariant generated by external tool [1]
validated by KeY

```
/*@ public normal_behavior
    @ requires 0.0f <= u && u <= 0.0f && 2.0f <= v && v <= 3.0f;
    @ diverges true;
    @*/
public float pendulum-approx(float u, float v) {
    /*@ loop_invariant -1.1f <= u && u <= 1.2f &&
        @ -3.2f <= v && v <= 3.1f &&
        @ (-0.11f*u) + (0.01f*v) + (1.0f*u*u) + (0.03f*u*v)
        @ + (0.12f***v) <= 1.15f;
        @*/
    while (true) {
        u = u + 0.01f * v;
        v = v + 0.01f * (-0.5f * v - 9.81f *
            (u - (u* u* u) / 6.0f +
            (u* u* u* u* u) / 120.0f));
    }
    return u;
}
```


Solver performance

Axiomatization performance

| Experiment | Quantified Axioms | \# Goals | CVC4 | | Z3 | | MathSAT | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | \# Goals
 Decided | Avg. | \# Goals
 Decided | Avg. | \# Goals
 Decided | Avg. |
| Axioms in SMT | \checkmark | 10 | 9 | 33.2 | 4 | 63.4 | - | - |
| Axioms as Taclets | x | 10 | 10 | 33.4 | 5 | 74.2 | 8 | 0.9 |

- axiomatization in KeY avoids quantified formulas: both CVC4 and Z3 prove more goals
- fp. sqrt vs axiomatization:
axiomatization mostly cheaper, but weaker

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY
Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis [1] (by example)

Recent work in rounding error analysis
Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23
[1] Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. A. Solovyev, C. Jacobsen, Z. Rakamaric, G. Gopalakrishnan. FM'15

Bounding rounding errors

real-valued specification:

$$
f(y, z)=y^{2}+z^{2} \quad \text { where } \quad y \in[10.0,20.0], z \in[20.0,80.0]
$$

floating-point implementation: $\quad \tilde{f}(\tilde{y}, \tilde{z})=\tilde{y} \tilde{*} \tilde{y}+\tilde{z} \tilde{*} \tilde{z} \quad$ where $\quad \tilde{y}=y+u_{y}, \tilde{z}=z+u_{z}$

Goal: compute absolute rounding error bound:

$$
\max _{y, z \in Y, Z}|f(y, z)-\tilde{f}(\tilde{y}, \tilde{z})|
$$

- main challenge: accurate bounds
- over-approximation of the true errors; impossible to get exact errors in general
- (too) complex to reason about: combines real-valued and floating-point reasoning cannot be simply phrased as SMT-query
- (aside: easier than relative errors)

Abstracting floating-point arithmetic

$$
f(y, z)=y^{2}+z^{2}
$$

too complex: $\max _{y, z \in Y, Z}|f(y, z)-\tilde{f}(\tilde{y}, \tilde{z})|$
use abstraction of floating-point arithmetic

$$
\tilde{o p}=o p(1+e)+d \quad \text { where }|e| \leq \epsilon,|d| \leq \delta
$$

to compute abstraction

$$
\hat{f}(y, z, \mathbf{e}, \mathbf{d})=\left(\left(\left(y\left(1+e_{1}\right)+d_{1}\right)^{2}\left(1+e_{2}\right)+d_{2}\right)+\left(\left(z\left(1+e_{3}\right)+d_{3}\right)^{2}\left(1+e_{4}\right)+d_{4}\right)\right)\left(1+e_{5}\right)
$$

- now only real-valued
- but still too complex to reason about automatically
- apply Taylor approximation; standard approach in maths and physics to simplify equations

Taylor approximation

general first-order Taylor approximation:

$$
f(\mathbf{x})=f(\mathbf{a})+\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}}(\mathbf{a})\left(x_{i}-a_{i}\right)+1 / 2 \sum_{i, j=1}^{k} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{p})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)
$$

compute Taylor approximation around ($y, z, \mathbf{0}, \mathbf{0}$)

$$
\begin{aligned}
\hat{f}(y, z, \mathbf{e}, \mathbf{d})= & \hat{f}(y, z, \mathbf{0}, \mathbf{0})+\left.\frac{\partial \hat{f}}{\partial e_{1}}\right|_{y, z, \mathbf{0}} e_{1}+\left.\frac{\partial \hat{f}}{\partial e_{2}}\right|_{y, z, \mathbf{0}} e_{2}+\left.\frac{\partial \hat{f}}{\partial e_{3}}\right|_{y, z, \mathbf{0}} e_{3}+ \\
& =\left.f(y, z) \quad \frac{\partial \hat{f}}{\partial d_{1}}\right|_{y, z, \mathbf{0}} d_{1}+\left.\frac{\partial \hat{f}}{\partial d_{2}}\right|_{y, z, \mathbf{0}} d_{2}+R_{2}(y, z, \mathbf{e}, \mathbf{d})
\end{aligned}
$$

approximate bound on roundoff error:

$$
\left.\max _{y, z \in I}|\hat{f}(y, z, \mathbf{e}, \mathbf{d})-f(y, z)|=\max _{y, z \in I}\left|\frac{\partial \hat{f}}{\partial e_{1}}\right|_{y, z, \mathbf{0}} e_{1}+\ldots+\left.\frac{\partial \hat{f}}{\partial d_{2}}\right|_{y, z, \mathbf{0}} d_{2}+R_{2}(y, z, \mathbf{e}, \mathbf{d}) \right\rvert\,
$$

Bounding rounding errors

$$
\left.\max _{y, z \in I}|\hat{f}(y, z, \mathbf{e}, \mathbf{d})-f(y, z)|=\max _{y, z \in I}\left|\frac{\partial \hat{f}}{\partial e_{1}}\right|_{y, z, \mathbf{0}} e_{1}+\ldots+\left.\frac{\partial \hat{f}}{\partial d_{2}}\right|_{y, z, \mathbf{0}} d_{2}+R_{2}(y, z, \mathbf{e}, \mathbf{d}) \right\rvert\,
$$

- compute floating-point abstraction
- compute derivatives symbolically

- bound derivates over interval input domain with interval arithmetic or branch-and-bound
- supports arithmetic and transcendental functions (as library functions, but derivatives are well-defined)
- does not support function calls modularly
requires inlining of functions

This talk

Background on floating-point arithmetic (real quick)

Floating-points in KeY
Deductive Verification of Floating-Point Java Programs in KeY, TACAS'21 and STTT'23

Tutorial on rounding error analysis (by example)

Recent work in rounding error analysis
Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs, SAS'23
joint work with Rosa Abbasi

Modular rounding error analysis

$$
\begin{aligned}
& g(x)=x^{2} \quad \text { where } \quad x \in[0.0,100.0] \\
& f(y, z)=g(y)+g(z) \quad \text { where } \quad y \in[10.0,20.0], z \in[20.0,80.0] \quad \longrightarrow \quad y, z \in[0.0,100.0]
\end{aligned}
$$

- consider simplified case first: no input errors
- step 1: compute an error specification for each procedure

$$
\begin{aligned}
\max _{x \in I}|g(x)-\tilde{g}(x)| & \leq\left|\beta_{g}\right| \\
\max _{y, z \in J, K}|f(y, z)-\tilde{f}(y, z)| & \leq\left|\beta_{f}\right|
\end{aligned} \quad \text { reuse error spec }
$$

- step 2: instantiate error specifications for each procedure at their call-sites with appropriate contexts
- goal: abstract enough but not too much
constant error bound
looses too much accuracy

pre-compute only derivatives modest performance

Step 1: Roundoff error specification

$$
\begin{aligned}
& g(x)=x^{2} \quad \text { where } \quad x \in[0.0,100.0] \\
& f(y, z)=g(y)+g(z) \quad \text { where } \quad y \in[10.0,20.0], z \in[20.0,80.0]
\end{aligned}
$$

- extend rounding error model with procedures: replaced with (real-valued) symbolic variables

$$
\begin{aligned}
& \hat{g}\left(x, e_{1}, d_{1}\right)=x^{2}\left(1+e_{1}\right)+d_{1} \\
& \hat{f}\left(y, z, e_{2}, \beta_{g}(y), \beta_{g}(z)\right)=\left(g(y)+\beta_{g}(y)+g(z)+\beta_{g}(z)\right)\left(1+e_{2}\right) \\
& \text { real-valued result } \begin{array}{c}
\text { absolute error } \\
\text { depends on input parameter }
\end{array}
\end{aligned}
$$

- values of symbolic variables only needed at instantiation time

Step 1: Roundoff error abstraction

$$
\begin{aligned}
& \hat{g}\left(x, e_{1}, d_{1}\right)=x^{2}\left(1+e_{1}\right)+d_{1} \\
& \hat{f}\left(y, z, e_{2}, \beta_{g}(y), \beta_{g}(z)\right)=\left(g(y)+\beta_{g}(y)+g(z)+\beta_{g}(z)\right)\left(1+e_{2}\right)
\end{aligned}
$$

- proceed as before with Taylor approximation:

$$
\begin{aligned}
& \left.\beta_{g}=\left.\frac{\partial \hat{g}}{\partial e_{1}}\right|_{x, \mathbf{0}} e_{1}+\left.\frac{\partial \hat{g}}{\partial d_{1}}\right|_{x, 0} d_{1}\right) \\
& \beta_{f}=\left.\frac{\partial \hat{f}}{\partial e_{2}}\right|_{y, z, \mathbf{0}} e_{2}+\left.\frac{\partial \hat{f}}{\partial \beta_{g}(y)}\right|_{y, z, \mathbf{0}} \beta_{g}(y)+\left.\frac{\partial \hat{f}}{\partial \beta_{g}(z)}\right|_{y, z, \mathbf{0}} \beta_{g}(z)+R_{2}\left(y, z, e_{2}, \beta_{g}(y), \beta_{g}(z)\right) \\
& \quad \text { treated symbolically }
\end{aligned}
$$

- pre-evaluate part of the Taylor approximations at abstraction stage already

Step 2: Instantiation

- instantiate error terms using interval analysis recursively

$$
\begin{aligned}
& \beta_{g}=\epsilon \max \left|x^{2}\right|+\delta \\
& \beta_{f}=\epsilon \max |g(y)+g(z)|+(1+2 \epsilon) \max \mid \beta_{g}(y)+\underbrace{\beta_{g}(z) \mid} \text { using intervals of } y \text { and } z
\end{aligned}
$$

- also check that intervals of error specifications are respected
- tradeoff: parts of β_{g} have been computed with (potentially) wider ranges, but only once
- correctness: inlining error specs without pre-computation yields the same error expression

Input errors

- use triangle inequality to split error:

$$
|f(\mathbf{x})-\tilde{f}(\tilde{\mathbf{x}})|=|f(\mathbf{x})-f(\tilde{\mathbf{x}})+f(\tilde{\mathbf{x}})-\tilde{f}(\tilde{\mathbf{x}})| \leq \underbrace{|f(\mathbf{x})-f(\tilde{\mathbf{x}})|}_{\text {propagation error }}+\underbrace{|f(\tilde{\mathbf{x}})-\tilde{f}(\tilde{\mathbf{x}})|}_{\text {round-off error }}
$$

- compute error specification in two parts:

$$
\begin{gathered}
\max _{x \in I}|g(x)-\tilde{g}(\tilde{x})| \leq\left|\gamma_{g}\right|+\left|\beta_{g}\right| \\
\max _{y, z \in J, K}|f(y, z)-\tilde{f}(\tilde{y}, \tilde{z})| \leq\left|\gamma_{f}\right|+\left|\beta_{f}\right| \\
\gamma_{g}=g(\tilde{x})-g(x) \quad \text { where } \quad \tilde{x}=x+u_{x} \\
\gamma_{f}=f(\tilde{y}, \tilde{z})-f(y, z) \quad \text { where } \quad \tilde{y}=y+u_{y}, \tilde{z}=z+u_{z}
\end{gathered}
$$

- compute Taylor approximation, but w.r.p. inputs

Evaluation

| benchmark | \#top level | \# procedure calls | \# arithmetic ops | \# arith. ops inlined |
| :---: | :---: | :---: | :---: | :---: |
| matrix | 5 | 15 | 26 | 371 |
| matrixXL | 6 | 33 | 44 | 911 |
| matrixXS | 4 | 6 | 17 | 101 |
| complex | 15 | 152 | 98 | 699 |
| complexXL | 16 | 181 | 127 | 1107 |
| complexXS | 13 | 136 | 72 | 464 |

- matrix: library procedures on 3×3 matrices with determinant and Cramer's rule
- complex: library procedures on complex numbers, used for computing properties of RL circuits
- XL/XS: larger or smaller versions

Performance-Accuracy wrt. state-of-the-art

| case study | procedure | Hugo | | Daisy | | FPTaylor | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | err | time(s) | error | time(s) | err | time(s) |
| matrix | solveEquationX
 solveEquationY
 solveEquationZ
 solveEquationsVector | $\begin{aligned} & 4.14 \mathrm{e}-15 \\ & 4.68 \mathrm{e}-15 \\ & 5.16 \mathrm{e}-15 \\ & 4.73 \mathrm{e}-15 \end{aligned}$ | 3.9 | $\begin{aligned} & 1.07 \mathrm{e}-15 \\ & 1.55 \mathrm{e}-15 \\ & 1.90 \mathrm{e}-15 \\ & 2.09 \mathrm{e}-16 \end{aligned}$ | 10.5 | $\begin{aligned} & 3.83 \mathrm{e}-16 \\ & 6.11 \mathrm{e}-16 \\ & 4.96 \mathrm{e}-16 \\ & 1.83 \mathrm{e}-16 \end{aligned}$ | 539.7 |
| matrixXL | solveEquationsVectorXL | $4.78 \mathrm{e}-15$ | 5.9 | $2.53 \mathrm{e}-16$ | 24.2 | 2.27e-16 | 1342.0 |
| matrixXS | | | 3.5 | | 4.0 | | 158.9 |
| complex | computeCurrentRe computeCurrentIm computeInstantCurrent approxEnergy computeRadiusVector computeDivideVector computeReciprocalRadiusV | $\begin{gathered} \hline 6.12 \mathrm{e}-10 \\ 6.71 \mathrm{e}-10 \\ 3.34 \mathrm{e}-03 \\ 1.00 \mathrm{e}-01 \\ \hline 1.47 \mathrm{e}-11 \\ 2.39 \mathrm{e}-10 \\ 3.12 \mathrm{e}-14 \end{gathered}$ | 239.7 | $\begin{array}{\|c\|} \hline 4.90 \mathrm{e}-10 \\ 2.46 \mathrm{e}-11 \\ 5.57 \mathrm{e}+01 \\ 1.67 \mathrm{e}+03 \\ \mathbf{6 . 2 0 e - 1 4} \\ 8.26 \mathrm{e}-14 \\ 3.89 \mathrm{e}-14 \end{array}$ | 439.1 | $9.65 \mathrm{e}-14$ $2.42 \mathrm{e}-13$ - - $7.26 \mathrm{e}-14$ $3.85 \mathrm{e}-14$ $4.67 \mathrm{e}-15$ | TO |
| complexXL | approxEnergy XL | 2.00e-01 | 969.3 | $3.34 \mathrm{e}+03$ | 1315.1 | - | TO |
| complexXS | | | 181.7 | | 13.4 | | 140.7 |

Are we there yet?

Rounding error analysis

Are we there yet?

Rounding error analysis
■ for (short) pure arithmetic computations: FPTaylor [1], Daisy [2], PRECiSA [3]
[1] Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. A. Solovyev, C. Jacobsen, Z. Rakamaric, G. Gopalakrishnan. FM'15
[2] Daisy - Framework for Analysis and Optimization of Numerical Programs (Tool Paper), TACAS'18
[3] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAl'18

Are we there yet?

Rounding error analysis

- If for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA
\square conditionals $[1,2]$

```
def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
    require(-15.0 \leq x1 \leq 15 && -15.0 \leq x2 \leq 15.0 && -15.0 \leq x3 \leq 15)
    val res = -x1*x2 - 2*x2*x3 - x1 - x3
    if (res <= 0.0)
        else
    }
```

[1] Towards a Compiler for Reals. E. Darulova, V. Kuncak, TOPLAS'17
[2] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAl'18

Are we there yet?

Rounding error analysis

- If for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

】conditionals
\square loops $[1,2,3]$

[1] Towards a Compiler for Reals. E. Darulova, V. Kuncak, TOPLAS'17
time step _ absolute error
[2] An Abstract Interpretation Framework for the Round-Off Error Analysis of Floating-Point Programs, L. Titolo, M.A. Feliú, M.M. Moscato, C.A. Muñoz. VMCAl'18
[3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS'23

Are we there yet?

Rounding error analysis

- If for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

】conditionals
■loops
】scalability $[1,2,3]$

```
                                    imperative code:
double heat1d(double (*xm)[N], double (*xp)[N], double* x0) {
    int i,j;
    for (j=1; j<N; j++) {
        for (i=2; i<(N-j); i++) {
            xm[j][i]=0.25*xm[j-1][i+1]+0.5*xm[j-1][i]+0.25*xm[j-1][i-1];
            xp[j][i]=0.25*xp[j-1][i-1]+0.5*xp[j-1][i]+0.25*xp[j-1][i+1];
        }
        xm[j][0] = 0.25*xm[j-1][1] + 0.5*xm[j-1][0] + 0.25*x0[j-1];
        xp[j][0] = 0.25*xp[j-1][1] + 0.5*xp[j-1][0] + 0.25*x0[j-1];
        x0[j] = 0.25*xm[0][j-1] + 0.5*x0[j-1] + 0.25*xp[0][j-1];
    }
    return x0[N-1];
}
```

[1]Scalable yet Rigorous Floating-point Error Analysis. A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha SC'20
[2] A Two-Phase Approach for Conditional Floating-Point Verification. D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis. TACAS'21
[3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS'23

Are we there yet?

Rounding error analysis

- If for (short) pure arithmetic computations: FPTaylor, Daisy, PRECiSA

】conditionals
\square loops
】scalability $[1,2,3]$

```
                analysis of our functional DSL scales better [3]:
def heat1d(ax: Vector): Real = {
    require(1.0 <= ax && ax <= 2.0 && ax.size(33))
    if (ax.length() <= 1) {
        ax.head
    } else {
        val coef = Vector(List(0.25, 0.5, 0.25))
        val updCoefs = ax.slideReduce(3,1)(v => (coef*v).sum())
        heat1d(updCoefs)
    }
}
```

[1]Scalable yet Rigorous Floating-point Error Analysis. A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, P. Panchekha SC'20
[2] A Two-Phase Approach for Conditional Floating-Point Verification. D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, M. Christakis. TACAS'21
[3] Scaling up Roundoff Analysis of Functional Data Structure Programs. A. Isychev, E. Darulova. SAS'23

Are we there yet？

Rounding error analysis

■ for（short）pure arithmetic computations：FPTaylor，Daisy，PRECiSA
】conditionals
\square loops
】scalability

Deductive verification（in KeY）

－with automation：absence of runtime errors
口？？？

