
Everything You Always Wanted to
Know About Dynamic Logic*
(*But Were Afraid to Ask)

Wolfgang Ahrendt

Chalmers University of Technology, Gothenburg, Sweden

KeY Workshop, Bergen, 2023

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 0

Outline

▶ Modal Logic

▶ Temporal Logic

▶ Propositional DL

▶ First-order DL

▶ Applications

▶ Reflections

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 1

Part I

Base Logics

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 2

Modal Logic

▶ Pre-history: Aristotle, ..., W. of Ockham, ...

▶ Modern modal logic: C.I. Lewis (1912)

▶ Semantics: A. Tarski (1930); A. Prior, J. Hintikka, S. Kripke (all 1950s)

▶ Modal logics come in many flavours: K, T, S4, S5, D, ...
(vary in properties of accessibility relation)

▶ Application areas:
philosophy of language, epistemology, metaphysics, computation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 3

Modal Logic

Modal Logic represents statements about necessity and possibility

▶ □φ “φ in all states we can access from here”

▶ ♢φ “φ in some state we can access from here”

▶ “access” is one single step in accessibility relation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 4

Modal Logic

Kripke Structure: Possible Worlds with (one-step) Accessibility Relation

¬p
□p
¬♢p

p
□p
♢p

p
¬□p
♢p

¬p
□p
♢p

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 5

Temporal Logic

Here: Linear Temporal Logic (LTL) with only □ and ♢

▶ Conceived by:
A.N. Prior 1957, N. Rescher and A. Urquhart 1971, A. Pnueli 1977
(Pnueli writes G and F instead of □ and ♢)

▶ □φ “φ in all future states”

▶ ♢φ “φ in some future state”

Question: Is LTL, with only □ and ♢, a Modal Logic?

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 6

Temporal Logic

Linear Chain of Worlds with Next-World Relation →

¬p

¬□p
♢p

¬p

¬□p
♢p

p

□p
♢p

p

□p
♢p

. . . (p∞)

▶ Modal accessibility is one step in reflexive transitive closure of next-world relation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 7

Temporal Logic

Linear Chain of Worlds with Next-World Relation →

¬p

¬□p
♢p

¬p

¬□p
♢p

p

□p
♢p

p

□p
♢p

. . . (p∞)

▶ Modal accessibility is one step in reflexive transitive closure of next-world relation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 7

Temporal Logic

Linear Chain of Worlds with Next-World Relation →

¬p
¬□p
♢p

¬p
¬□p
♢p

p
□p
♢p

p
□p
♢p

. . . (p∞)

▶ Modal accessibility is one step in reflexive transitive closure of next-world relation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 7

Pnueli’77 on LTL as Modal Logic

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 8

Dynamic Logic: A Multi Modal Logic

Conceived by:

▶ V.R. Pratt 1976: “Semantical considerations on Floyd-Hoare Logic”

▶ D. Harel 1979: “First-Order Dynamic Logic”

Dynamic logic has modalities “parameterised” by actions.

▶ [α]φ “φ in all states we can access by α”

▶ ⟨α⟩φ “φ in some state we can access by α”

▶ “access by α” refers to one step in α-accessibility relation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 9

Dynamic Logic as Multi Modal Logic

Worlds with Multiple Next World Relations: Actions

¬p

⟨α ∪ β⟩p
¬[α ∪ β]p

¬p

¬⟨β;α⟩p
[β;α]p

p

⟨γ⟩p
¬[γ]p

p

⟨δ; γ⟩p
¬[δ; γ]p

α β γ

γ

δβ

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 10

Dynamic Logic as Multi Modal Logic

Worlds with Multiple Next World Relations: Actions

¬p
⟨α ∪ β⟩p
¬[α ∪ β]p

¬p
¬⟨β;α⟩p
[β;α]p

p
⟨γ⟩p
¬[γ]p

p
⟨δ; γ⟩p
¬[δ; γ]p

α β γ

γ

δβ

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 10

Part II

Propositional Dynamic Logic

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 11

Propositional Dynamic Logic (PDL)

▶ Normally defined for non-deterministic programs
▶ Non-determinism serves different purposes:

▶ a means of abstraction
▶ modelling an uncontrollable environment

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 12

Propositional Dynamic Logic (PDL)

Propositional DL Formulas

(Assume sets of atomic formulas and programs.)
If φ, ψ are formulas, and α, β are programs, then

▶ ¬φ
▶ φ ∨ ψ

▶ ⟨α⟩φ (some execution of α leads to a state where φ)

are also formulas, and

▶ α;β (sequence)

▶ α ∪ β (non-deterministic choice)

▶ α∗ (execute α a finite, non-deterministic number of times)

▶ ?φ (test φ, proceed if true, fail if false)

are also programs.

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 13

Semantics of PDL

Assume:

▶ atomic formulas: AF

▶ atomic programs: AP

Semantics of PDL Formulas

Kripke model M = (S , I) where
▶ Set of states S = {u, v , . . .}
▶ Interpretation of atomic formulas I : AF → 2S

▶ Interpretation of atomic programs I : AP → 2S×S

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 14

Semantics of PDL

Let p be any atomic formula, a be any atomic program

Semantics of PDL Formulas

Meaning of formula φM ⊆ S :

▶ pM = I(p)
▶ aM = I(a)
▶ (φ ∨ ψ)M = φM ∪ ψM

▶ (¬φ)M = S − φM

▶ Note: Definition avoids truth values. Instead: Formulas evaluate to sets of states.

▶ ∧,→,↔, true, false are defined from ¬,∨

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 15

Semantics of PDL

Semantics of PDL Formulas

Meaning of formula φM ⊆ S , meaning of program αM ⊆ S × S :

▶ (α;β)M = {(u, v) | ∃w . (u,w) ∈ αM and (w , v) ∈ βM}
▶ (α ∪ β)M = αM ∪ βM

▶ (α∗)M = “reflexive transitive closure of αM”

▶ (?φ)M = {(u, u) | u ∈ φM}
▶ (⟨α⟩φ)M = {u | ∃v . (u, v) ∈ αM and v ∈ φM}

▶ Whenever φ holds, ?φ is “skip”.

▶ Whenever φ does not hold, ?φ does not result in any state (‘fails’).

▶ I.p., (?false)M = {(u, u) | u ∈ falseM} = {(u, u) | u ∈ ∅} = ∅

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 16

Semantics of PDL

Semantics of PDL Formulas

Meaning of formula φM ⊆ S , meaning of program αM ⊆ S × S :

▶ (α;β)M = {(u, v) | ∃w . (u,w) ∈ αM and (w , v) ∈ βM}
▶ (α ∪ β)M = αM ∪ βM

▶ (α∗)M = “reflexive transitive closure of αM”

▶ (?φ)M = {(u, u) | u ∈ φM}
▶ (⟨α⟩φ)M = {u | ∃v . (u, v) ∈ αM and v ∈ φM}

▶ If α or β fail, then α;β fails.

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 17

Sequential Composition and Failure

α β×

α;β×

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 18

Sequential Composition and Failure

α β×

α;β×

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 18

Semantics of PDL

Semantics of PDL Formulas

Meaning of formula φM ⊆ S , meaning of program αM ⊆ S × S :

▶ (α;β)M = {(u, v) | ∃w . (u,w) ∈ αM and (w , v) ∈ βM}
▶ (α ∪ β)M = αM ∪ βM

▶ (α∗)M = “reflexive transitive closure of αM”

▶ (?φ)M = {(u, u) | u ∈ φM}
▶ (⟨α⟩φ)M = {u | ∃v . (u, v) ∈ αM and v ∈ φM}

▶ If α fails, then α ∪ β ≡ β (and vice versa)

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 19

Non-determinism and Failure

▶ Example: α;β ∪ γ; δ where β fails after α

α

β×
α;β×

γ

δ

γ; δ

▶ In this case: α;β ∪ γ; δ ≡ γ; δ

▶ transaction mechanism: if an alternative fails anywhere, it “never happened”

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 20

Derived Formulas and Programs

▶ [α]φ ≡ ¬⟨α⟩¬φ (all executions of α lead to a state where φ)

▶ skip ≡ ?true

▶ fail ≡ ?false

▶ if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β)
▶ while φ do α od ≡ (?φ;α)∗ ; ?¬φ

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 21

Derived Programs

▶ if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β) ≡ ?φ;α ≡ α

u1

u1 u2

?φ

α

?φ;α

?¬φ×
?¬φ;β×

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 22

Derived Programs

▶ if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β) ≡ ?¬φ;β ≡ β

u1

u1 u3

?φ×
?φ;α×

?¬φ

β

?¬φ;β

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 23

Derived Programs

▶ while φ do α od ≡ (?φ;α)∗ ; ?¬φ

u1

u2

u3

u4 u4

?¬φ×
?φ;α ?¬φ×

?φ;α ?¬φ×
?φ;α ?¬φ

?φ;α×

(?φ;α)∗ ; ?¬φ

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 24

Derived Programs

▶ while φ do α od ≡ (?φ;α)∗ ; ?¬φ

u1

u2

u3

u4 u4

?¬φ×
?φ;α ?¬φ×

?φ;α ?¬φ×
?φ;α ?¬φ

?φ;α×

(?φ;α)∗ ; ?¬φ

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 24

Derived Programs

▶ while true do α od ≡ (?true;α)∗ ; ?¬true ≡ (?true;α)∗ ; ?false

?false×
?true;α ?false×

?true;α ?false×
?true;α ?false×

?true;α ?false×

(?true;α)∗ ; ?false×

(?true;α)∗ ; ?false
×

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 25

Derived Programs

▶ while true do α od ≡ (?true;α)∗ ; ?¬true ≡ (?true;α)∗ ; ?false

?false×
?true;α ?false×

?true;α ?false×
?true;α ?false×

?true;α ?false×

(?true;α)∗ ; ?false×

(?true;α)∗ ; ?false
×

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 25

Derived Programs

▶ while true do α od ≡ (?true;α)∗ ; ?¬true ≡ (?true;α)∗ ; ?false

?false×
?true;α ?false×

?true;α ?false×
?true;α ?false×

?true;α ?false×

(?true;α)∗ ; ?false×

(?true;α)∗ ; ?false
×

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 25

Derived Formulas

▶ Hoare triples: {φ}α {ψ} ≡ φ→ [α]ψ

▶ Weakest precondition: wp . α . φ ≡ ⟨α⟩φ
▶ Weakest liberal precondition: wlp . α . φ ≡ [α]φ

I recommend: “Dijkstra’s Legacy on Program Verification” by Reiner Hähnle

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 26

Some Valid PDL Formulas

▶ ⟨α ∪ β⟩φ ↔ ⟨α⟩φ ∨ ⟨β⟩φ
▶ [α ∪ β]φ ↔ [α]φ ∧ [β]φ

▶ ⟨α;β⟩φ ↔ ⟨α⟩⟨β⟩φ
▶ [α;β]φ ↔ [α][β]φ

▶ ⟨?ψ⟩φ ↔ ψ ∧ φ
▶ [?ψ]φ ↔ ψ → φ

▶ (φ→ [α]φ) → (φ→ [α∗]φ)

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 27

Meta-properties of PDL

PDL is not compact

▶ {¬φ,¬⟨α⟩φ,¬⟨α;α⟩φ,¬⟨α;α;α⟩φ, . . .} ∪ {⟨α∗⟩φ}
is finitely satisfiable, but not satisfiable.

PDL is complete

▶ There exists a proof system ⊢ such that: if |= φ then ⊢ φ.

PDL Complexity

▶ PDL satisfiability is deterministic exponential time complete.
(Regardless of allowing ⟨ ⟩, [] inside ?-tests.)

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 28

Deterministic PDL

A program α is deterministic if it describes a partial function:

αM ∈ S ⇀ S

Deterministic while programs

▶ ∪, * appear only to abbreviate if and while

In deterministic PDL:

▶ [α]φ is partial correctness

▶ ⟨α⟩φ is total correctness

▶ ⟨α⟩φ→ [α]φ is valid

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 29

Part III

First-order Dynamic Logic

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 30

First-order Dynamic Logic (DL)

Changes to PDL:
▶ Atomic programs have forms:

▶ v := t (deterministic assignment)
▶ v := ∗ (non-deterministic assignment)

▶ Atomic formulas are of the forms:
▶ p(t1, . . . , tn)
▶ t1 = t2

▶ If φ is a DL formula, then so are ∃x .φ, ∀x .φ
▶ φ appearing in ?φ must be a quantifier-free first-order formula

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 31

DL Formula Examples

Note: Definition is fully recursive. It allows, e.g.:

▶ ∀x . (⟨t := a; a := b; b := t⟩b = x ↔ ⟨a := a+ b; b := a− b; a := a− b⟩b = x)

▶ ⟨α⟩∃x .φ(x)
▶ ∃x .⟨α⟩φ(x)

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 32

Some Valid DL Formulas

▶ [v := ∗]φ(v) ↔ ∀x .φ(x)
▶ ⟨v := ∗⟩φ(v) ↔ ∃x .φ(x)
▶ ⟨v := t⟩φ ↔ φ[v/t]

(φ[v/t] result of substituting v by t)
weakest precondition reasoning

▶ [v := t]φ ↔ φ[v/t]

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 33

Meta-properties of (first-order) DL

DL is in-complete

▶ There exists no proof system ⊢ such that:

if |= φ then ⊢ φ.

DL is relatively complete

▶ Let A be an arithmetical structure.

▶ Assume TA to be all theorems of A.

▶ There exists a proof system ⊢ such that:

if A |= φ then TA ⊢ φ.

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 34

Part IV

Smart Contract Verification

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 35

Solidity Smart Contract: Auction (snippet)

. . .

function withdraw () public {

// A bidder can withdraw all her money

withdrawCounter = withdrawCounter + 1;

require(bidded[msg.sender]);

msg.sender.transfer(bid[msg.sender]);

bid[msg.sender] = 0;

}

. . .

▶ Solidity’s require(φ) is exactly ?φ from (theoretical) DL

▶ If bidded[msg.sender] is false, execution fails, and withdrawCounter is not incremented!

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 36

Solidity Dynamic Logic

Solidity DL:

▶ [p]φ: If p executes successfully then φ holds afterwards

▶ ⟨p⟩φ: p executes successfully and φ holds afterwards

Successful execution: does not fail, no state reverted.

(What about non-termination?)

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 37

Calculus Rules: require

Rules for require

Γ,U(b = true) =⇒ U [ω]φ,∆
Γ =⇒ U [require(b); ω]φ,∆

b simple

assume U(b = true) when verifying remaining code

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 38

Part V

Abstract Object Creation

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 39

Approach Taken

▶ a logic that can only ‘talk about’ created objects

▶ problem:
calculus cannot ‘substitute’ new objects into pre-conditions

▶ solution:
non-standard substitution using meta-knowledge about ‘newness’

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 40

Semantics
informal

▶ [[u := new]]σ : create new object and assign it to u

▶ [[e]]σ ∈ set of objects existing in σ

▶ [[∀o.φ]]σ : φ holds for all objects existing in σ

▶ [[∃o.φ]]σ : φ holds for some object existing in σ

examples:

∀l .⟨u := new⟩¬(u = l) true in all states

⟨u := new⟩∀l .¬(u = l) false in all states

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 41

References

▶ W. Ahrendt, F. de Boer, I. Grabe
Abstract Object Creation in Dynamic Logic
– To Be or Not To Be Created
FM’09

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 42

Part VI

Reflections

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 43

Approaches to Logics of Programs

Endogenous Logics Program fixed outside the formulas
e.g.: LTL

Exogenous Logics Formulas include program fragments
e.g.: Dynamic Logic, Hoare Logic

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 44

Pnueli’77 on Endogenous and Exogenous Logics

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 45

Pnueli’77 on Endogenous and Exogenous Logics

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 46

Remarks

▶ I did not cover applications and tooling for PDL

▶ I did not do justice to rich theory of (P)DL
but see:
David Harel, Dexter Kozen, Jerzy Tiuryn
Dynamic Logic
MIT Press 2000

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 47

Thanks!

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 48

	Base Logics
	Propositional Dynamic Logic
	First-order Dynamic Logic
	Smart Contract Verification
	Abstract Object Creation
	Reflections

