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Part I

Base Logics
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Modal Logic

▶ Pre-history: Aristotle, ..., W. of Ockham, ...

▶ Modern modal logic: C.I. Lewis (1912)

▶ Semantics: A. Tarski (1930); A. Prior, J. Hintikka, S. Kripke (all 1950s)

▶ Modal logics come in many flavours: K, T, S4, S5, D, ...
(vary in properties of accessibility relation)

▶ Application areas:
philosophy of language, epistemology, metaphysics, computation
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Modal Logic

Modal Logic represents statements about necessity and possibility

▶ □φ “φ in all states we can access from here”

▶ ♢φ “φ in some state we can access from here”

▶ “access” is one single step in accessibility relation
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Modal Logic

Kripke Structure: Possible Worlds with (one-step) Accessibility Relation

¬p
□p
¬♢p

p
□p
♢p

p
¬□p
♢p

¬p
□p
♢p
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Temporal Logic

Here: Linear Temporal Logic (LTL) with only □ and ♢

▶ Conceived by:
A.N. Prior 1957, N. Rescher and A. Urquhart 1971, A. Pnueli 1977
(Pnueli writes G and F instead of □ and ♢)

▶ □φ “φ in all future states”

▶ ♢φ “φ in some future state”

Question: Is LTL, with only □ and ♢, a Modal Logic?
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Temporal Logic

Linear Chain of Worlds with Next-World Relation →

¬p

¬□p
♢p

¬p

¬□p
♢p

p

□p
♢p

p

□p
♢p

. . . (p∞)

▶ Modal accessibility is one step in reflexive transitive closure of next-world relation
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Temporal Logic
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Pnueli’77 on LTL as Modal Logic
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Dynamic Logic: A Multi Modal Logic

Conceived by:

▶ V.R. Pratt 1976: “Semantical considerations on Floyd-Hoare Logic”

▶ D. Harel 1979: “First-Order Dynamic Logic”

Dynamic logic has modalities “parameterised” by actions.

▶ [α]φ “φ in all states we can access by α”

▶ ⟨α⟩φ “φ in some state we can access by α”

▶ “access by α” refers to one step in α-accessibility relation
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Dynamic Logic as Multi Modal Logic

Worlds with Multiple Next World Relations: Actions

¬p

⟨α ∪ β⟩p
¬[α ∪ β]p

¬p

¬⟨β;α⟩p
[β;α]p

p

⟨γ⟩p
¬[γ]p

p

⟨δ; γ⟩p
¬[δ; γ]p

α β γ

γ

δβ
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Part II

Propositional Dynamic Logic
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Propositional Dynamic Logic (PDL)

▶ Normally defined for non-deterministic programs
▶ Non-determinism serves different purposes:

▶ a means of abstraction
▶ modelling an uncontrollable environment
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Propositional Dynamic Logic (PDL)

Propositional DL Formulas

(Assume sets of atomic formulas and programs.)
If φ, ψ are formulas, and α, β are programs, then

▶ ¬φ
▶ φ ∨ ψ

▶ ⟨α⟩φ (some execution of α leads to a state where φ )

are also formulas, and

▶ α;β (sequence)

▶ α ∪ β (non-deterministic choice)

▶ α∗ (execute α a finite, non-deterministic number of times)

▶ ?φ (test φ, proceed if true, fail if false)

are also programs.
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Semantics of PDL

Assume:

▶ atomic formulas: AF

▶ atomic programs: AP

Semantics of PDL Formulas

Kripke model M = (S , I) where
▶ Set of states S = {u, v , . . .}
▶ Interpretation of atomic formulas I : AF → 2S

▶ Interpretation of atomic programs I : AP → 2S×S
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Semantics of PDL

Let p be any atomic formula, a be any atomic program

Semantics of PDL Formulas

Meaning of formula φM ⊆ S :

▶ pM = I(p)
▶ aM = I(a)
▶ (φ ∨ ψ)M = φM ∪ ψM

▶ (¬φ)M = S − φM

▶ Note: Definition avoids truth values. Instead: Formulas evaluate to sets of states.

▶ ∧,→,↔, true, false are defined from ¬,∨
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Semantics of PDL

Semantics of PDL Formulas

Meaning of formula φM ⊆ S , meaning of program αM ⊆ S × S :

▶ (α;β)M = {(u, v) | ∃w . (u,w) ∈ αM and (w , v) ∈ βM}
▶ (α ∪ β)M = αM ∪ βM

▶ (α∗)M = “reflexive transitive closure of αM”

▶ (?φ)M = {(u, u) | u ∈ φM}
▶ (⟨α⟩φ)M = {u | ∃v . (u, v) ∈ αM and v ∈ φM}

▶ Whenever φ holds, ?φ is “skip”.

▶ Whenever φ does not hold, ?φ does not result in any state (‘fails’).

▶ I.p., (?false)M = {(u, u) | u ∈ falseM} = {(u, u) | u ∈ ∅} = ∅
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Semantics of PDL

Semantics of PDL Formulas

Meaning of formula φM ⊆ S , meaning of program αM ⊆ S × S :

▶ (α;β)M = {(u, v) | ∃w . (u,w) ∈ αM and (w , v) ∈ βM}
▶ (α ∪ β)M = αM ∪ βM

▶ (α∗)M = “reflexive transitive closure of αM”

▶ (?φ)M = {(u, u) | u ∈ φM}
▶ (⟨α⟩φ)M = {u | ∃v . (u, v) ∈ αM and v ∈ φM}

▶ If α or β fail, then α;β fails.
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Sequential Composition and Failure

α β×

α;β×
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Sequential Composition and Failure
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Semantics of PDL

Semantics of PDL Formulas

Meaning of formula φM ⊆ S , meaning of program αM ⊆ S × S :

▶ (α;β)M = {(u, v) | ∃w . (u,w) ∈ αM and (w , v) ∈ βM}
▶ (α ∪ β)M = αM ∪ βM

▶ (α∗)M = “reflexive transitive closure of αM”

▶ (?φ)M = {(u, u) | u ∈ φM}
▶ (⟨α⟩φ)M = {u | ∃v . (u, v) ∈ αM and v ∈ φM}

▶ If α fails, then α ∪ β ≡ β (and vice versa)
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Non-determinism and Failure

▶ Example: α;β ∪ γ; δ where β fails after α

α

β×
α;β×

γ

δ

γ; δ

▶ In this case: α;β ∪ γ; δ ≡ γ; δ

▶ transaction mechanism: if an alternative fails anywhere, it “never happened”
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Derived Formulas and Programs

▶ [α]φ ≡ ¬⟨α⟩¬φ (all executions of α lead to a state where φ)

▶ skip ≡ ?true

▶ fail ≡ ?false

▶ if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β)
▶ while φ do α od ≡ (?φ;α)∗ ; ?¬φ
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Derived Programs

▶ if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β) ≡ ?φ;α ≡ α

u1

u1 u2

?φ

α

?φ;α

?¬φ×
?¬φ;β×
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Derived Programs

▶ if φ then α else β fi ≡ (?φ;α) ∪ (?¬φ;β) ≡ ?¬φ;β ≡ β

u1

u1 u3

?φ×
?φ;α×

?¬φ

β

?¬φ;β
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Derived Programs

▶ while φ do α od ≡ (?φ;α)∗ ; ?¬φ

u1

u2

u3

u4 u4

?¬φ×
?φ;α ?¬φ×

?φ;α ?¬φ×
?φ;α ?¬φ

?φ;α×

(?φ;α)∗ ; ?¬φ
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Derived Programs

▶ while φ do α od ≡ (?φ;α)∗ ; ?¬φ
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Derived Programs

▶ while true do α od ≡ (?true;α)∗ ; ?¬true ≡ (?true;α)∗ ; ?false

?false×
?true;α ?false×

?true;α ?false×
?true;α ?false×

?true;α ?false×

(?true;α)∗ ; ?false×

(?true;α)∗ ; ?false
×
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Derived Programs
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Derived Formulas

▶ Hoare triples: {φ}α {ψ} ≡ φ→ [α]ψ

▶ Weakest precondition: wp . α . φ ≡ ⟨α⟩φ
▶ Weakest liberal precondition: wlp . α . φ ≡ [α]φ

I recommend: “Dijkstra’s Legacy on Program Verification” by Reiner Hähnle
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Some Valid PDL Formulas

▶ ⟨α ∪ β⟩φ ↔ ⟨α⟩φ ∨ ⟨β⟩φ
▶ [α ∪ β]φ ↔ [α]φ ∧ [β]φ

▶ ⟨α;β⟩φ ↔ ⟨α⟩⟨β⟩φ
▶ [α;β]φ ↔ [α][β]φ

▶ ⟨?ψ⟩φ ↔ ψ ∧ φ
▶ [?ψ]φ ↔ ψ → φ

▶ (φ→ [α]φ) → (φ→ [α∗]φ)
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Meta-properties of PDL

PDL is not compact

▶ {¬φ,¬⟨α⟩φ,¬⟨α;α⟩φ,¬⟨α;α;α⟩φ, . . .} ∪ {⟨α∗⟩φ}
is finitely satisfiable, but not satisfiable.

PDL is complete

▶ There exists a proof system ⊢ such that: if |= φ then ⊢ φ.

PDL Complexity

▶ PDL satisfiability is deterministic exponential time complete.
(Regardless of allowing ⟨ ⟩, [ ] inside ?-tests.)
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Deterministic PDL

A program α is deterministic if it describes a partial function:

αM ∈ S ⇀ S

Deterministic while programs

▶ ∪, * appear only to abbreviate if and while

In deterministic PDL:

▶ [α]φ is partial correctness

▶ ⟨α⟩φ is total correctness

▶ ⟨α⟩φ→ [α]φ is valid
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Part III

First-order Dynamic Logic
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First-order Dynamic Logic (DL)

Changes to PDL:
▶ Atomic programs have forms:

▶ v := t (deterministic assignment)
▶ v := ∗ (non-deterministic assignment)

▶ Atomic formulas are of the forms:
▶ p(t1, . . . , tn)
▶ t1 = t2

▶ If φ is a DL formula, then so are ∃x .φ, ∀x .φ
▶ φ appearing in ?φ must be a quantifier-free first-order formula
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DL Formula Examples

Note: Definition is fully recursive. It allows, e.g.:

▶ ∀x . ( ⟨t := a; a := b; b := t⟩b = x ↔ ⟨a := a+ b; b := a− b; a := a− b⟩b = x )

▶ ⟨α⟩∃x .φ(x)
▶ ∃x .⟨α⟩φ(x)
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Some Valid DL Formulas

▶ [v := ∗]φ(v) ↔ ∀x .φ(x)
▶ ⟨v := ∗⟩φ(v) ↔ ∃x .φ(x)
▶ ⟨v := t⟩φ ↔ φ[v/t]

(φ[v/t] result of substituting v by t)
weakest precondition reasoning

▶ [v := t]φ ↔ φ[v/t]
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Meta-properties of (first-order) DL

DL is in-complete

▶ There exists no proof system ⊢ such that:

if |= φ then ⊢ φ.

DL is relatively complete

▶ Let A be an arithmetical structure.

▶ Assume TA to be all theorems of A.

▶ There exists a proof system ⊢ such that:

if A |= φ then TA ⊢ φ.
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Part IV

Smart Contract Verification
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Solidity Smart Contract: Auction (snippet)

. . .

function withdraw () public {

// A bidder can withdraw all her money

withdrawCounter = withdrawCounter + 1;

require(bidded[msg.sender ]);

msg.sender.transfer(bid[msg.sender ]);

bid[msg.sender] = 0;

}

. . .

▶ Solidity’s require(φ) is exactly ?φ from (theoretical) DL

▶ If bidded[msg.sender] is false, execution fails, and withdrawCounter is not incremented!
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Solidity Dynamic Logic

Solidity DL:

▶ [p]φ: If p executes successfully then φ holds afterwards

▶ ⟨p⟩φ: p executes successfully and φ holds afterwards

Successful execution: does not fail, no state reverted.

(What about non-termination?)
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Calculus Rules: require

Rules for require

Γ,U(b = true) =⇒ U [ω]φ,∆
Γ =⇒ U [require(b); ω]φ,∆

b simple

assume U(b = true) when verifying remaining code
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Part V

Abstract Object Creation
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Approach Taken

▶ a logic that can only ‘talk about’ created objects

▶ problem:
calculus cannot ‘substitute’ new objects into pre-conditions

▶ solution:
non-standard substitution using meta-knowledge about ‘newness’
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Semantics
informal

▶ [[u := new]]σ : create new object and assign it to u

▶ [[e]]σ ∈ set of objects existing in σ

▶ [[∀o.φ]]σ : φ holds for all objects existing in σ

▶ [[∃o.φ]]σ : φ holds for some object existing in σ

examples:

∀l .⟨u := new⟩¬(u = l) true in all states

⟨u := new⟩∀l .¬(u = l) false in all states
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Part VI

Reflections
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Approaches to Logics of Programs

Endogenous Logics Program fixed outside the formulas
e.g.: LTL

Exogenous Logics Formulas include program fragments
e.g.: Dynamic Logic, Hoare Logic

Wolfgang Ahrendt KeY Workshop, Bergen, 2023 44



Pnueli’77 on Endogenous and Exogenous Logics
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Pnueli’77 on Endogenous and Exogenous Logics
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Remarks

▶ I did not cover applications and tooling for PDL

▶ I did not do justice to rich theory of (P)DL
but see:
David Harel, Dexter Kozen, Jerzy Tiuryn
Dynamic Logic
MIT Press 2000
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Thanks!
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