
Advancements in User Interface and Usability of KeY

Wolfram Pfeifer | August 9, 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu




?



?

valid Java heap



?

valid Java heap

type information



?

valid Java heap

type information
no termination witness



?

valid Java heap

type information
no termination witness

heap encoding



Open goal should be presented in a view the user is familiar with.

Interaction should be possible on the input artifact (Java/JML).

When switching between different representations, KeY should present hints that help to connect them.

Formulae should be presented in the way the user has written them.

3/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Vision



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.

1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).

4/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Progress so far



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.
1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).

4/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Progress so far



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.
1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).

4/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Progress so far















Evaluated with 6 KeY experts

The work shows:
Identifying bugs can be faster, even for KeY experts.

Origin/category tracking of formulas is really important.

For making more interactions available, we need a better parser.

6/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Evaluation



“Embedding Proof Scripts into Java/JML Source Code” (Master’s thesis)
Idea: Write the interactions in form of a script into the source code.

1 //@ requires req1: (\exists int x; (\forall int y; p(x,y)));

2 //@ ensures ens1: (\forall int v; (\exists int u; p(u,v)));

3 void m(int param) {

4 if (param > 7) {

5 //@ pragma [StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON;

6 /*@ assert phi \by {

7 @ var sk1 = req1.skolemize();

8 @ var cutTerm = (\forall int z; pred(z));

9 @ assert cutTerm \by {

10 @ ...

11 @ };

12 @ ens1.instantiate(v=sk1.x);

13 @ ...

14 @ }; @*/

15 }

16 }

7/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Ongoing work



“Embedding Proof Scripts into Java/JML Source Code” (Master’s thesis)
Idea: Write the interactions in form of a script into the source code.

1 //@ requires req1: (\exists int x; (\forall int y; p(x,y)));

2 //@ ensures ens1: (\forall int v; (\exists int u; p(u,v)));

3 void m(int param) {

4 if (param > 7) {

5 //@ pragma [StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON;

6 /*@ assert phi \by {

7 @ var sk1 = req1.skolemize();

8 @ var cutTerm = (\forall int z; pred(z));

9 @ assert cutTerm \by {

10 @ ...

11 @ };

12 @ ens1.instantiate(v=sk1.x);

13 @ ...

14 @ }; @*/

15 }

16 }

7/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Ongoing work



Proof Slicing

Navigation History

Undoing Interactions

Automatically run JavaC first (Alexander Weigl)

Background SMT (ongoing)

Proof Caching (ongoing)

8/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Usability Improvements



Proof Slicing �

Navigation History

Undoing Interactions

Automatically run JavaC first (Alexander Weigl)

Background SMT (ongoing)

Proof Caching (ongoing)

8/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Usability Improvements

















Often, very large parts of proofs could be removed.
Trend: The larger the proof, the larger the percentage.
Most of the removed steps are normalizations of formulas which are never used later on.

10/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Evaluation



Rule de-duplication (implemented):
If the same rule is applied to the same formula(s) in two branches, it possibly can be moved in front of the
branching rule.

Slice w.r.t. a selected formula (implemented):
“Which steps produced this formula?”

“Which input formulas are needed to derive this formula?”

Proof Reordering (ongoing work):
Group certain rule applications (similar to One-Step-Simplification)

Possible categories: NNF, Polynomial simplification, ...

11/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Applications of the Dependency Analysis



Rule de-duplication (implemented):
If the same rule is applied to the same formula(s) in two branches, it possibly can be moved in front of the
branching rule.

Slice w.r.t. a selected formula (implemented):
“Which steps produced this formula?”

“Which input formulas are needed to derive this formula?”

Proof Reordering (ongoing work):
Group certain rule applications (similar to One-Step-Simplification)

Possible categories: NNF, Polynomial simplification, ...

11/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Applications of the Dependency Analysis



Rule de-duplication (implemented):
If the same rule is applied to the same formula(s) in two branches, it possibly can be moved in front of the
branching rule.

Slice w.r.t. a selected formula (implemented):
“Which steps produced this formula?”

“Which input formulas are needed to derive this formula?”

Proof Reordering (ongoing work):
Group certain rule applications (similar to One-Step-Simplification)

Possible categories: NNF, Polynomial simplification, ...

11/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Applications of the Dependency Analysis



Proof Slicing ✓

Navigation History �

Undoing Interactions �

Automatically run JavaC first (Alexander Weigl)

Background SMT (ongoing)

Proof Caching (ongoing)

12/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Usability Improvements







Proof Slicing ✓

Navigation History ✓

Undoing Interactions ✓

Automatically run JavaC first (Alexander Weigl) �

Background SMT (ongoing)

Proof Caching (ongoing)

13/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Usability Improvements







Proof Slicing ✓

Navigation History ✓

Undoing Interactions ✓

Automatically run JavaC first (Alexander Weigl) ✓

Background SMT (ongoing) �

Proof Caching (ongoing)

15/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Usability Improvements











Proof Slicing ✓

Navigation History ✓

Undoing Interactions ✓

Automatically run JavaC first (Alexander Weigl) ✓

Background SMT (ongoing) ✓

Proof Caching (ongoing) �

17/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Further Usability Improvements



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching













What we have seen
A novel way to represent (certain) proof goals as JML.

Multiple new UI features (some already in the new 2.12 release).

Proof Slicing ✓

Navigation History ✓

Undoing Interactions ✓

Automatically run JavaC first (Alexander Weigl) ✓

Background SMT (ongoing) ✓

Proof Caching (ongoing) ✓

20/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Conclusion


	KeY

