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Open goal should be presented in a view the user is familiar with.

Interaction should be possible on the input artifact (Java/JML).

When switching between different representations, KeY should present hints that help to connect them.

Formulae should be presented in the way the user has written them.
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Vision



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.

1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).
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Evaluated with 6 KeY experts

The work shows:
Identifying bugs can be faster, even for KeY experts.

Origin/category tracking of formulas is really important.

For making more interactions available, we need a better parser.
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Evaluation



“Embedding Proof Scripts into Java/JML Source Code” (Master’s thesis)
Idea: Write the interactions in form of a script into the source code.

1 //@ requires req1: (\exists int x; (\forall int y; p(x,y)));

2 //@ ensures ens1: (\forall int v; (\exists int u; p(u,v)));

3 void m(int param) {

4 if (param > 7) {

5 //@ pragma [StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON;

6 /*@ assert phi \by {

7 @ var sk1 = req1.skolemize();

8 @ var cutTerm = (\forall int z; pred(z));

9 @ assert cutTerm \by {

10 @ ...

11 @ };

12 @ ens1.instantiate(v=sk1.x);

13 @ ...

14 @ }; @*/

15 }

16 }
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Proof Slicing

Navigation History

Undoing Interactions

Automatically run JavaC first (Alexander Weigl)

Background SMT (ongoing)

Proof Caching (ongoing)
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Often, very large parts of proofs could be removed.
Trend: The larger the proof, the larger the percentage.
Most of the removed steps are normalizations of formulas which are never used later on.
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Rule de-duplication (implemented):
If the same rule is applied to the same formula(s) in two branches, it possibly can be moved in front of the
branching rule.

Slice w.r.t. a selected formula (implemented):
“Which steps produced this formula?”

“Which input formulas are needed to derive this formula?”

Proof Reordering (ongoing work):
Group certain rule applications (similar to One-Step-Simplification)

Possible categories: NNF, Polynomial simplification, ...
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Proof Slicing ✓

Navigation History �

Undoing Interactions �

Automatically run JavaC first (Alexander Weigl)

Background SMT (ongoing)

Proof Caching (ongoing)
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Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ ⊢ ∆ is valid, then Γ,E ⊢ ∆,Z is also valid (*).

(*) Under some restrictions:

The extended sequent must not have modalities or queries (Java code could differ).

Both must use the same taclet options.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY (ongoing).

Relax the above conditions.

18/20 August 9, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching













What we have seen
A novel way to represent (certain) proof goals as JML.

Multiple new UI features (some already in the new 2.12 release).

Proof Slicing ✓

Navigation History ✓

Undoing Interactions ✓

Automatically run JavaC first (Alexander Weigl) ✓

Background SMT (ongoing) ✓

Proof Caching (ongoing) ✓
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