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Established topic in computer security
Tools available to analyze source code

General Idea:
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✓
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Important class of Fairness definitions in Algorithmic Fairness

Usually framed as probabilistic properties

General Idea:

Group

Unprotected 1

· · ·
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Does a decision procedure disparately treat individuals from different groups?
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Important class of Fairness definitions in Algorithmic Fairness

Usually framed as probabilistic properties

General Idea:

Group Attribute: Random Variable G ∈ G
Unprotected Attribute: Random Variable U ∈ U
Deterministic Decision Procedure: P : G × U → D
Finite domains

Does a decision procedure disparately treat individuals from different groups?
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age given in decades

func credit1(age, score):

return (age != 5)

func credit2(age, score):

return (score>8)

func credit3(age, score):

if (age >= 6):

return (score >= 8)

else:

return (score >= 6)
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Analyze Decision Procedures w.r.t Fairness Criteria by
assigning high security status to a protected group
attribute and performing Information-Flow analyses
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This Work



1 Qualitative Information-Flow

2 Quantitative Information-Flow

3 Information Flow and Causal Analysis
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Unconditional Noninterference
A program P satisfies Unconditional Noninterference iff for all public inputs
u ∈ U and all secret inputs g, g′ ∈ G it holds that

P (u, g) = P (u, g′) .

Demographic Parity
A decision procedure satisfies demographic parity iff for all d ∈ D and g1, g2 ∈ G

Pr [P (G,U) = d | G = g1] = Pr [P (G,U) = d | G = g2]

For arbitrary but independent variables G,U:

Unconditional Noninterference⇒ Demographic Parity
Unconditional Noninterference ̸⇐ Demographic Parity

8/23 August 10, 2023 Algorithmic Fairness & Information-Flow Institute of Information Security
and Dependability (KASTEL)

Qualitative Information-Flow



Unconditional Noninterference
A program P satisfies Unconditional Noninterference iff for all public inputs
u ∈ U and all secret inputs g, g′ ∈ G it holds that

P (u, g) = P (u, g′) .

Demographic Parity
A decision procedure satisfies demographic parity iff for all d ∈ D and g1, g2 ∈ G

Pr [P (G,U) = d | G = g1] = Pr [P (G,U) = d | G = g2]

For arbitrary but independent variables G,U:

Unconditional Noninterference⇒ Demographic Parity
Unconditional Noninterference ̸⇐ Demographic Parity

8/23 August 10, 2023 Algorithmic Fairness & Information-Flow Institute of Information Security
and Dependability (KASTEL)

Qualitative Information-Flow



Unconditional Noninterference
A program P satisfies Unconditional Noninterference iff for all public inputs
u ∈ U and all secret inputs g, g′ ∈ G it holds that

P (u, g) = P (u, g′) .

Demographic Parity
A decision procedure satisfies demographic parity iff for all d ∈ D and g1, g2 ∈ G

Pr [P (G,U) = d | G = g1] = Pr [P (G,U) = d | G = g2]

For arbitrary but independent variables G,U:

Unconditional Noninterference⇒ Demographic Parity
Unconditional Noninterference ̸⇐ Demographic Parity

8/23 August 10, 2023 Algorithmic Fairness & Information-Flow Institute of Information Security
and Dependability (KASTEL)

Qualitative Information-Flow



Unconditional Noninterference
A program P satisfies Unconditional Noninterference iff for all public inputs
u ∈ U and all secret inputs g, g′ ∈ G it holds that

P (u, g) = P (u, g′) .

Demographic Parity
A decision procedure satisfies demographic parity iff for all d ∈ D and g1, g2 ∈ G

Pr [P (G,U) = d | G = g1] = Pr [P (G,U) = d | G = g2]

For arbitrary but independent variables G,U:

Unconditional Noninterference⇒ Demographic Parity

Unconditional Noninterference ̸⇐ Demographic Parity

8/23 August 10, 2023 Algorithmic Fairness & Information-Flow Institute of Information Security
and Dependability (KASTEL)

Qualitative Information-Flow



Unconditional Noninterference
A program P satisfies Unconditional Noninterference iff for all public inputs
u ∈ U and all secret inputs g, g′ ∈ G it holds that

P (u, g) = P (u, g′) .

Demographic Parity
A decision procedure satisfies demographic parity iff for all d ∈ D and g1, g2 ∈ G

Pr [P (G,U) = d | G = g1] = Pr [P (G,U) = d | G = g2]

For arbitrary but independent variables G,U:

Unconditional Noninterference⇒ Demographic Parity
Unconditional Noninterference ̸⇐ Demographic Parity

8/23 August 10, 2023 Algorithmic Fairness & Information-Flow Institute of Information Security
and Dependability (KASTEL)

Qualitative Information-Flow



Instead of unconditional guarantee:

Restrict guarantee to parts of the input space

//@ requires age < 6;

//@ determines \result \by score;

Provide classification of inputs that shall be treated equally

//@ determines \result \by score, (age >= 6);

boolean credit3(int age, int score){

if (age >= 6){

return (score >= 8);

} else {

return (score >= 6);

}

}
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35 Inputs
Yearly Wage
Tax category

...
Health Insurance

Religious
Affiliation

26 pages of flow charts

17 Output
Wage tax

Additional wage
tax
...

Tax Exemption
Church Tax

Analysis of Java Code 2015-2023 using the tool Joana
No insecure Information-Flow!

Graf et al. 2013; Snelting et al. 2014
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Quantitative Information-Flow
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Intuition:
You observe a randomly sampled u ∈ U and P ’s outcome d ∈ D.
With what probability can you guess G?

Conditional Vulnerability
For a program P and random independent variables G,U, we define the
Conditional Vulnerabiliy V (G|P,U) as follows:∑

(u,d)∈U×D

Pr [P (G,U) = d ,U = u] ·max
g∈G

Pr [G = g|P (G,U) = d ,U = u]

see e.g. Smith 2009

Can we use this as a Fairness Metric?
...for binary decisions? (|D| = 2)
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Given known distributions of G and U:
Compute V (G|P,U)

Problem: Vulnerability Measures two things at the same time:

How easy is it to guess G?

How much of G is revealed by P?

⇒ If G = g1 is extremely likely, P does not matter

⇒ Independence of P is an undesirable property for a metric evaluating P
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Fairness Spread
We define the Fairness Spread S (G,U,P) as follows:∑

u∈U
Pr [U = u] · max

g1,g2∈G
(Pr [P (g1, u) = 1]− Pr [P (g2, u) = 1])

Theorem
Assume G is distributed uniformly and U is independent of G, then:

S (G,U,P) = |G| · V (G|P,U)− 1

⇒ S (G,U,P) is independent of G’s distribution!
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S (G,U,P) S (G,U,P)
uniform distribution U ∈ [6, 7] more likely

func credit1(age, score):

return (age != 5)
1.0 1.0

func credit2(age, score):

return (score>8)
0.0 0.0

func credit3(age, score):

if (age >= 6):

return (score >= 8)

else:

return (score >= 6)

0.2 0.3
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∑
u∈U

Pr [U = u]︸ ︷︷ ︸
Weighted by U

· max
g1,g2∈G

(Pr [P (g1, u) = 1]− Pr [P (g2, u) = 1])︸ ︷︷ ︸
Maximal disparity between groups

Handwavy Explanation:

The higher the fairness spread the more group-based disparities.

Is there a more formal but also intuitive explanation?

Ability to handle dependent variables?

⇒ Causal Analysis to the rescue

16/23 August 10, 2023 Algorithmic Fairness & Information-Flow Institute of Information Security
and Dependability (KASTEL)
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Information Flow and Causal Analysis
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A rich framework for the (statistical) analysis of causal relationships

Three components

Background Variables B = {B1, . . . ,Bk}
Modeled Variables V = {V1, . . . ,Vn}
Set of functions fi

(
pai ,Bpai

)
:

How is Vi computed based on pai ⊆ V and Bpai
⊆ B?

Example: Red Cars pay higher car insurance premiums Kusner et al. 2017

Group := ε1 ∼ Ud (0, 1)

Aggressive := ε2 ∼ U (0, 1)

Red Car := (0.5 · Group+ Aggressive) > 0.8

High P. := Red Car

G A

R H

Accident
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Given a structural causal model and a concrete observation:
How would the observation be different for a modified variable?

Group := ε1 ∼ Ud (0, 1)

Aggressive := ε2 ∼ U (0, 1)

Red Car := (0.5 · Group+ Aggressive) > 0.8

High P. := Red Car

G Pr [Red Car = 1]
0 0.2
1 0.7

Observation:
Group = 0
Red Car = 0

Intervention:
Group← 1

Possible Outcomes:
Pr [Red Car = 1] = 0.625

Interventions provide us with information on counterfactual events:
What if the applicant had been older?
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For a program P and a causal model C we define P̂C (b):

Compue G,U from C with background variable assignements b

Return P (G,U)

Counterfactual Version: P̂C (g, b) (intervenes for G)

Counterfactual Fairness
A program P with inputs G and U is counterfactually fair with respect to a causal
model C iff for any g1, g2 ∈ G, u ∈ U , d ∈ D it holds that:

Pr
[
P̂C(g1,B) = d

∣∣U = u,G = g1
]
= Pr

[
P̂C(g2,B) = d

∣∣U = u,G = g1
]
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Fairness Spread is a bound on the probability of having a deviating
counterfactual.

For two groups this bound is precise

Can be formally shown using the notion of a difference function:

DiffC (P, b) = max
g∈G

∣∣P̂C (b)− P̂C (g, b)
∣∣

Consequences:

Machinery for Qualitative Information Flow is applicable to P̂C

Quantitative Information Flow Analyses can provide bounds for
counterfactual unfairness
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Causal Model for Credit Example:
score provided by external entity with questionable methodology:

group := ε1 ∼ Ud (0, 9)

income := ε2 ∼ U (0, 9)

zipCode := if (group ≥ 6) ε3 ∼ U (−1, 5) else ε4 ∼ U (−3, 3)

score := income+ zipCode
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Causal Model for Credit Example:
score provided by external entity with questionable methodology:

group := ε1 ∼ Ud (0, 9)

income := ε2 ∼ U (0, 9)

zipCode := if (group ≥ 6) ε3 ∼ U (−1, 5) else ε4 ∼ U (−3, 3)

score := income+ zipCode

func credit2(age, score):

return (score>8)

func credit3(age, score):

if (age >= 6):

return (score >= 8)

else:

return (score >= 6)

Fairness Spread of P̂C : 0.27 Fairness Spread of P̂C : 0.23
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We can use Information-Flow tools
to analyze fairness questions

Future Work:

Machine Learning Systems

Beyond binary decisions?

Synthesizing restriced
classifications?
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