
Verification of Red-Black Trees in KeY

A Case Study in Deductive Java Verification

Johanna Stuber | August 10, 2023

13

8

1

6

11

17

15 25

22 27

l

k

A

B C

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


self-balancing binary search trees

nodes are either red or black

JDK implementation: java.util.TreeMap

used internally in java.util.HashMap

Why verify red-black trees with KeY?
1 towards verification of real-world JDK code

2 contribution to a fully verified algorithmic “Basic Tool Box”

3 insights about framing of tree stuctures in KeY

2/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Red-Black Trees



no double red

5

2 7

11

16

6

black balanced

5

2 7

11

16

consequence: tree height in O(log n) for n elements in the tree

3/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Red-Black Trees
Properties



1 insert a red node with the new key “naively”
2 restore red-black properties through

a recolouring
b tree rotations

5

2

A B

C

5

2

A

B C

still in O(log n) for n elements in the tree

4/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Red-Black Trees
Insertion



rotations preserve root node

no reference to parent node

recursive implementation of add()

5

2

A B

C

5

2

A

B C

5/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Design Decisions



VerCors specification and verification (Armborst and Huisman 2021)
3 adaption of specifications regarding red black properties

VerifyThis 2012: Deletion in a Tree (Bruns, Mostowski, and Ulbrich 2015)
3 starting point for representation of basic tree structure

attempt in KeY (Bruns 2011)
7 completely different implementation decisions

6/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Existing Work



\locset footprint() {

return this.*
∪ left == null ? ∅ : left.footprint()

∪ right == null ? ∅ : right.footprint();

}

\intset treeSet() {

return this.key

∪ left == null ? ∅ : left.treeSet()

∪ right == null ? ∅ : right.treeSet();

}

7/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Usage of Model Methods
Tree Structure



boolean blackBalanced() {

return blackHeight(left) == blackHeight(right)

&& (left != null ==> left.blackBalanced())

&& (right != null ==> right.blackBalanced());

}

static int blackHeight(nullable Tree t)

boolean noDoubleRed()

boolean doubleRedTop()

boolean doubleRedLeft()

boolean doubleRedRight()

8/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Usage of Model Methods
Red Black Properties



instance invariant1

0 < var && left.var < var && right.var < var

&& left != right

&& \disjoint(this.*, right.footprint())

&& \disjoint(this.*, left.footprint())

&& \disjoint(left.footprint(), right.footprint())

&& ∀ k. k < key ==> k /∈ right.treeSet()

&& ∀ k. k > key ==> k /∈ left.treeSet()

&& \invariant_for(left) && \invariant_for(right)

validRBSubtree(), validRBSubtreeExceptRedTop()

1all checks for left == null and right == null omitted

9/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Object Invariants



/*@ normal_behaviour

@ ensures key ∈ treeSet() <==> \result == true;

@*/

boolean contains(int key)

/*@ normal_behaviour

@ requires validRBTree();

@ ensures validRBTree();

@ ensures treeSet() == \old(treeSet()) ∪ {key};

@*/

void add(int key)

10/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Simplified Contracts



framing: show that “untouched” parts of the tree haven’t changed

right.add(key);

//@ assert left.footprint() == \old(left.footprint());

//@ assert left.treeSet() == \old(left.treeSet());

//@ assert left.blackBalanced() == \old(left.blackBalanced());

//@ assert ...

additional assertions

//@ assert treeSet() == \old(treeSet()) ∪ {key};

//@ assert validRBSubtreeExceptRedTop();

//@ assert ...

11/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Assertions



prove “simple” statements over sets

expand the right definition at the right time

use the right proof strategy settings

remember the above for later iterations of the proof

prove some goals “analogously” to others

12/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Verification Challenges



private void rightRotate() {

right.left = left.right; ...

/*@ assert right_inv: \invariant_for(right) \by {

rule "recall_right_not_null";

expand on="self.<inv>";

assert "self.right.footprint() != empty" \by { ... }

auto classAxioms=false steps=5000; } @*/

}

written directly after assertion in the code

help coping with the problems mentioned above

assertion labels provide access to previous assertions

13/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

JML Scripts



code spec #asserts script JML
model methods etc. - 155 - - 155
contains() 11 11 6 2 17
add() 9 11 1 2 16
addRight() 21 13 52 222 373
addLeft() (estimated) 21 13 52 222 373
rightRotate() 15 17 48 324 450
leftRotate() (estimated) 15 17 48 324 450
recolour() 5 13 29 120 204
setHeight() 0 38 21 0 65
other 7 17 0 0 17
total (estimated) 108 305 157 670 1,374

14/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Statistics
Lines of . . .



rule applications manual scripted
contains() 8,432 0 completely
addRight() 83,506 362 partly (most of framing)

rightRotate() 33,819 57
all but a few goals
8 min execution

recolour() 12,148 31 all but "preparations"
setHeight() 23,540 40 nothing

15/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Statistics
Proof Statistics



lines of assertions + scripts by purpose:

framing rb trees
rightRotate() 248 188
recolour() 137 54
setHeight() (#asserts) 20 1

gut feeling: 3/4 framing, 1/4 red-black trees

16/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Statistics
Framing vs. Red-Black Trees



JML scripts + assertion labels
script generator

better handling of sets

more transparent proof strategy settings

interactive proof loader

(better) proof caching

enhanced approach to framing – dynamic separation logic?

17/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Desirable Features for KeY



successful proof of contains and add methods for red-black trees

dynamic frames + tree structures are a lot of work
extensively used:

model methods
assertions + JML scripts
proof strategy settings

5

2 7

6

18/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

Conclusion



Lukas Armborst and Marieke Huisman. “Permission-Based Verification of
Red-Black Trees and Their Merging”. In: 2021 IEEE/ACM 9th International
Conference on Formal Methods in Software Engineering (FormaliSE).
IEEE. 2021, pp. 111–123.

Daniel Bruns. “Specification of red-black trees: Showcasing dynamic
frames, model fields and sequences”. In: 10th KeY Symposium, Nijmegen,
the Netherlands. 2011, p. 296.

Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich.
“Implementation-level verification of algorithms with KeY”. In: International
journal on software tools for technology transfer 17 (2015), pp. 729–744.

19/18 August 10, 2023 Johanna Stuber: Red-Black Trees
Institute of Information Security
and Dependability (KASTEL)

References I


	Appendix
	References


