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Main Challenge



VeriFast in a Nutshell

� Mainly developed by Bart Jacobs (starting around 2008)

� Program verifier for C (Pointers!) and other languages (Java,

C++)

� Based on Separation Logic

Verification Objectives

� Functional Correctness wrt. partial correctness

� also total correctness can be configured

� Memory Safety

� no arithmetic under-/overflow

� safe access via pointers (heap chunks)
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Verification using VeriFast

User’s Steps: Annotate source code for automatic verification

Annotation language

� Boolean expressions attached as

� pre-/postcondition (requires/ensures)

� invariant (of loop)

� assertion

� Nice integration with code variables

� Auxiliary constructs (predicates, fixpoints, lemmata, . . . )
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Main Task when Working with VeriFast

Holy Grail: Find the right annotations for the code

Example quicksort: blows up from 43 LOC to 296 LOC
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First Impressions



First Impressions From Tool

Example createNode()

Status Line

Proof Tree

C-Editor
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Example createNode()

Basic Data Structures
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Example Stack

Symbolic Execution of createNode()

malloc
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Symbolic Execution of createNode()

malloc

if if

[null ] [not null ]
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Example Stack

Symbolic Execution of createNode()

malloc

if if

[null ] [not null ]

[then] [else]
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Symbolic Execution of createNode()

malloc

if if

[null ] [not null ]
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Proof Tree

Represents Symbolic Code Execution

VeriFast optimizes

Proof Tree
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First Impressions From Tool

Example createNode() with Bug

Var-Value Mapping

Restrictions on

Values
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First Impressions From Tool

Summary

+ Code Oriented

+ Proof Tree

+ PT Node Inspection

- PT Optimization
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VeriFast Tutorial



VeriFast in Action

assert - Annotation Placed within Code for Debugging
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VeriFast in Action

assert - Annotation for Debugging

//@ assert false; allows to stop symbolic execution and to

inspect current situation!

+ Verification can

be stopped

- Normalization of

assumptions
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VeriFast in Action

if - Statement Splits Proof-Tree

Split for ’then’

and ’else’
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VeriFast in Action

while - Statement Requires Invariant

Split for proving

invariant and

skipping loop body

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 15



VeriFast in Action

while - Statement Requires Invariant

Split for proving

invariant and

skipping loop body

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 15



VeriFast in Action

while - Statement Requires Invariant

annotation for

debugging
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VeriFast in Action

Function Call

Two functions with same implementation but different

post-conditions:
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VeriFast in Action

Function Call - Precondition is Checked

Error shown with

multiple culprits

For each function call, the validity of the pre-condition in the

current situation is checked.
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VeriFast in Action

Function Call - Postcondition is Only Knowledge
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VeriFast in Action

Function Call - Postcondition is Only Knowledge

For each function call, the implementation of the called function is

irrelevant. Only the post-condition counts!
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Towards a Process of Verification



Process of Verification Steps

Analyze Situation at 
Location and Improve Annotation

Add New Objects and
Remaining Heap Chunks 

to Post-Condition

Shrink Possible Values
of Involved Variables

Make Heap Chunks
Available

Feel Happy

Execute Verification
Request

Start Verification
Attempt

Add Trivial
Contracts and Invariants

Verifast

User

Load Pure 
Implementation Code

[assertionMightNotHold]

                  [functionLeaksHeapChunks]

                         [potentialArithmeticOverflow]

[noMatchingHeapChunks] [successful]
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Demo
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Summary



Summary of VeriFast

Advantages

� User interacts with Code!!!

� Error feedback: Current node in Proof Tree can be inspected

� Debugging: Verification can be stopped at any code location

� Annotation language is aligned to C (e.g. declaration of ghost

variables)

� Assertion statement possible at every code location

� Modular verification

� Proof-Carrying-Code (PCC) philosophy

PCC: Once the proof is done, it’s really done . . .
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Summary of VeriFast

Dis-Advantages

� Implementation code is polluted with VeriFast-annotations

� Incomplete coverage of C language (array, multi-dim arrays)

� Lack of tutorials

� Examples hard to follow (without docu)

� Confusing identifiers for predicates/lemmata/ (very short IDs)

� Optimization of proof tree

� Normalization in assumptions (< instead of > )
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Questions to the Audience

Can AI-based systems help to find the right VeriFast annotation?

Is it worthwhile to allow multiple contracts per function?
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Thank you.
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