
Verification using VeriFast – Useful Feedbacks

and other Supporting Tools

Thomas Baar

Hochschule für Technik und Wirtschaft (HTW) Berlin

Department of Engineering I

Talk @ KeY Symposium 2023

Høgskulen p̊a Vestlandet (HVL), Bergen, Norway

August 8 - 10, 2023

Who is Thomas Baar?

Short Bio � Joined KeY-Team in 1999 as PhD student

� PhD thesis on Semantics of UML/OCL in 2002

� Post-Doc 2003 - 2007 at EPFL, Switzerland

� 2007 - 2011: Software developer in a small

company

� Since 2011: Professor at HTW Berlin

Interests � Better teaching of Formal Methods:

� find small and convincing examples

� find right metaphor

� get hands-on experience with (large) case

studies

� Domain-Specific Languages as a versatile tool

in engineering

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 1

Who is Thomas Baar?

Short Bio � Joined KeY-Team in 1999 as PhD student

� PhD thesis on Semantics of UML/OCL in 2002

� Post-Doc 2003 - 2007 at EPFL, Switzerland

� 2007 - 2011: Software developer in a small

company

� Since 2011: Professor at HTW Berlin

Interests � Better teaching of Formal Methods:

� find small and convincing examples

� find right metaphor

� get hands-on experience with (large) case

studies

� Domain-Specific Languages as a versatile tool

in engineering

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 1

Who is Thomas Baar?

Short Bio � Joined KeY-Team in 1999 as PhD student

� PhD thesis on Semantics of UML/OCL in 2002

� Post-Doc 2003 - 2007 at EPFL, Switzerland

� 2007 - 2011: Software developer in a small

company

� Since 2011: Professor at HTW Berlin

Interests � Better teaching of Formal Methods:

� find small and convincing examples

� find right metaphor

� get hands-on experience with (large) case

studies

� Domain-Specific Languages as a versatile tool

in engineering

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 1

Who is Thomas Baar?

Short Bio � Joined KeY-Team in 1999 as PhD student

� PhD thesis on Semantics of UML/OCL in 2002

� Post-Doc 2003 - 2007 at EPFL, Switzerland

� 2007 - 2011: Software developer in a small

company

� Since 2011: Professor at HTW Berlin

Interests � Better teaching of Formal Methods:

� find small and convincing examples

� find right metaphor

� get hands-on experience with (large) case

studies

� Domain-Specific Languages as a versatile tool

in engineering
©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 1

Outline

Main Challenge

First Impressions

VeriFast Tutorial

Towards a Process of Verification

Summary

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 2

Main Challenge

VeriFast in a Nutshell

� Mainly developed by Bart Jacobs (starting around 2008)

� Program verifier for C (Pointers!) and other languages (Java,

C++)

� Based on Separation Logic

Verification Objectives

� Functional Correctness wrt. partial correctness

� also total correctness can be configured

� Memory Safety

� no arithmetic under-/overflow

� safe access via pointers (heap chunks)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 3

VeriFast in a Nutshell

� Mainly developed by Bart Jacobs (starting around 2008)

� Program verifier for C (Pointers!) and other languages (Java,

C++)

� Based on Separation Logic

Verification Objectives

� Functional Correctness wrt. partial correctness

� also total correctness can be configured

� Memory Safety

� no arithmetic under-/overflow

� safe access via pointers (heap chunks)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 3

Verification using VeriFast

User’s Steps: Annotate source code for automatic verification

Annotation language

� Boolean expressions attached as

� pre-/postcondition (requires/ensures)

� invariant (of loop)

� assertion

� Nice integration with code variables

� Auxiliary constructs (predicates, fixpoints, lemmata, . . .)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 4

Verification using VeriFast

User’s Steps: Annotate source code for automatic verification

Annotation language

� Boolean expressions attached as

� pre-/postcondition (requires/ensures)

� invariant (of loop)

� assertion

� Nice integration with code variables

� Auxiliary constructs (predicates, fixpoints, lemmata, . . .)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 4

Main Task when Working with VeriFast

Holy Grail: Find the right annotations for the code

Example quicksort: blows up from 43 LOC to 296 LOC

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 5

Main Task when Working with VeriFast

Holy Grail: Find the right annotations for the code

Example quicksort: blows up from 43 LOC to 296 LOC

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 5

Main Task when Working with VeriFast

Holy Grail: Find the right annotations for the code

Example quicksort: blows up from 43 LOC to 296 LOC

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 5

Main Task when Working with VeriFast

Holy Grail: Find the right annotations for the code

Example quicksort: blows up from 43 LOC to 296 LOC

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 5

First Impressions

First Impressions From Tool

Example createNode()

Status Line

Proof Tree

C-Editor

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 6

First Impressions From Tool

Example createNode()

Status Line

Proof Tree

C-Editor

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 6

Example createNode()

Basic Data Structures

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 7

Example Stack

Symbolic Execution of createNode()

malloc

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 8

Example Stack

Symbolic Execution of createNode()

malloc

if if

[null] [not null]

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 8

Example Stack

Symbolic Execution of createNode()

malloc

if if

[null] [not null]

[then] [else]

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 8

Example Stack

Symbolic Execution of createNode()

malloc

if if

[null] [not null]

[then] [else]

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 8

Example Stack

Symbolic Execution of createNode()

malloc

if if

[null] [not null]

[then] [else] [then] [else]

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 8

Proof Tree

Represents Symbolic Code Execution

VeriFast optimizes

Proof Tree

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 9

Proof Tree

Represents Symbolic Code Execution

VeriFast optimizes

Proof Tree

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 9

Proof Tree

Represents Symbolic Code Execution

VeriFast optimizes

Proof Tree

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 9

First Impressions From Tool

Example createNode() with Bug

Var-Value Mapping

Restrictions on

Values

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 10

First Impressions From Tool

Example createNode() with Bug

Var-Value Mapping

Restrictions on

Values

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 10

First Impressions From Tool

Summary

+ Code Oriented

+ Proof Tree

+ PT Node Inspection

- PT Optimization

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 11

First Impressions From Tool

Summary

+ Code Oriented

+ Proof Tree

+ PT Node Inspection

- PT Optimization

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 11

VeriFast Tutorial

VeriFast in Action

assert - Annotation Placed within Code for Debugging

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 12

VeriFast in Action

assert - Annotation Placed within Code for Debugging

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 12

VeriFast in Action

assert - Annotation Placed within Code for Debugging

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 12

VeriFast in Action

assert - Annotation for Debugging

//@ assert false; allows to stop symbolic execution and to

inspect current situation!

+ Verification can

be stopped

- Normalization of

assumptions

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 13

VeriFast in Action

assert - Annotation for Debugging

//@ assert false; allows to stop symbolic execution and to

inspect current situation!

+ Verification can

be stopped

- Normalization of

assumptions

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 13

VeriFast in Action

assert - Annotation for Debugging

//@ assert false; allows to stop symbolic execution and to

inspect current situation!

Assumption normalizes

original expression

+ Verification can

be stopped

- Normalization of

assumptions

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 13

VeriFast in Action

assert - Annotation for Debugging

//@ assert false; allows to stop symbolic execution and to

inspect current situation!

+ Verification can

be stopped

- Normalization of

assumptions

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 13

VeriFast in Action

if - Statement Splits Proof-Tree

Split for ’then’

and ’else’

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 14

VeriFast in Action

if - Statement Splits Proof-Tree

Split for ’then’

and ’else’

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 14

VeriFast in Action

while - Statement Requires Invariant

Split for proving

invariant and

skipping loop body

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 15

VeriFast in Action

while - Statement Requires Invariant

Split for proving

invariant and

skipping loop body

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 15

VeriFast in Action

while - Statement Requires Invariant

annotation for

debugging

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 16

VeriFast in Action

while - Statement Requires Invariant

annotation for

debugging

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 16

VeriFast in Action

Function Call

Two functions with same implementation but different

post-conditions:

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 17

VeriFast in Action

Function Call

Two functions with same implementation but different

post-conditions:

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 17

VeriFast in Action

Function Call

Two functions with same implementation but different

post-conditions:

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 17

VeriFast in Action

Function Call - Precondition is Checked

Error shown with

multiple culprits

For each function call, the validity of the pre-condition in the

current situation is checked.

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 18

VeriFast in Action

Function Call - Precondition is Checked

Error shown with

multiple culprits

For each function call, the validity of the pre-condition in the

current situation is checked.
©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 18

VeriFast in Action

Function Call - Postcondition is Only Knowledge

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 19

VeriFast in Action

Function Call - Postcondition is Only Knowledge

For each function call, the implementation of the called function is

irrelevant. Only the post-condition counts!

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 20

Towards a Process of Verification

Process of Verification Steps

Analyze Situation at
Location and Improve Annotation

Add New Objects and
Remaining Heap Chunks

to Post-Condition

Shrink Possible Values
of Involved Variables

Make Heap Chunks
Available

Feel Happy

Execute Verification
Request

Start Verification
Attempt

Add Trivial
Contracts and Invariants

Verifast

User

Load Pure
Implementation Code

[assertionMightNotHold]

 [functionLeaksHeapChunks]

 [potentialArithmeticOverflow]

[noMatchingHeapChunks] [successful]

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 21

Demo

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 21

Summary

Summary of VeriFast

Advantages

� User interacts with Code!!!

� Error feedback: Current node in Proof Tree can be inspected

� Debugging: Verification can be stopped at any code location

� Annotation language is aligned to C (e.g. declaration of ghost

variables)

� Assertion statement possible at every code location

� Modular verification

� Proof-Carrying-Code (PCC) philosophy

PCC: Once the proof is done, it’s really done . . .

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 22

Summary of VeriFast

Advantages

� User interacts with Code!!!

� Error feedback: Current node in Proof Tree can be inspected

� Debugging: Verification can be stopped at any code location

� Annotation language is aligned to C (e.g. declaration of ghost

variables)

� Assertion statement possible at every code location

� Modular verification

� Proof-Carrying-Code (PCC) philosophy

PCC: Once the proof is done, it’s really done . . .

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 22

Summary of VeriFast

Advantages

� User interacts with Code!!!

� Error feedback: Current node in Proof Tree can be inspected

� Debugging: Verification can be stopped at any code location

� Annotation language is aligned to C (e.g. declaration of ghost

variables)

� Assertion statement possible at every code location

� Modular verification

� Proof-Carrying-Code (PCC) philosophy

PCC: Once the proof is done, it’s really done . . .

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 22

Summary of VeriFast

Dis-Advantages

� Implementation code is polluted with VeriFast-annotations

� Incomplete coverage of C language (array, multi-dim arrays)

� Lack of tutorials

� Examples hard to follow (without docu)

� Confusing identifiers for predicates/lemmata/ (very short IDs)

� Optimization of proof tree

� Normalization in assumptions (< instead of >)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 23

Summary of VeriFast

Dis-Advantages

� Implementation code is polluted with VeriFast-annotations

� Incomplete coverage of C language (array, multi-dim arrays)

� Lack of tutorials

� Examples hard to follow (without docu)

� Confusing identifiers for predicates/lemmata/ (very short IDs)

� Optimization of proof tree

� Normalization in assumptions (< instead of >)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 23

Summary of VeriFast

Dis-Advantages

� Implementation code is polluted with VeriFast-annotations

� Incomplete coverage of C language (array, multi-dim arrays)

� Lack of tutorials

� Examples hard to follow (without docu)

� Confusing identifiers for predicates/lemmata/ (very short IDs)

� Optimization of proof tree

� Normalization in assumptions (< instead of >)

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 23

Questions to the Audience

Can AI-based systems help to find the right VeriFast annotation?

Is it worthwhile to allow multiple contracts per function?

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 24

Questions to the Audience

Can AI-based systems help to find the right VeriFast annotation?

Is it worthwhile to allow multiple contracts per function?

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 24

Questions to the Audience

Can AI-based systems help to find the right VeriFast annotation?

Is it worthwhile to allow multiple contracts per function?

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 24

Thank you.

©Thomas Baar: Verification using VeriFast – Useful Feedbacks and other Supporting Tools 24

	Main Challenge
	First Impressions
	VeriFast Tutorial
	Towards a Process of Verification
	Summary

