The Java Verification Tool KeY: A Tutorial
(preprint)

Bernhard Beckert! [0000-0002-9672-3291] 'Rijchard Bubel?, Daniel
Drodt2[0000700037303678220], Reiner Héihnlez [0000700017800077613], Florian
Lanzingerl[0000_0001_8560_6324], Wolfram Pfeiferl[0000_0002_9478_9641], Mattias
Ulbrichl[0000_0002_2350_1831], and Alexander Weigll[0000_0001_8446_4598]

! Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert, lanzinger, wolfram.pfeifer, ulbrich, weigl}@kit.edu
2 Technische Universitit Darmstadt, Darmstadt, Germany
{richard.bubel, daniel.drodt, reiner.haehnle}@tu-darmstadt.de

Abstract. The KeY tool is a state-of-the-art deductive program verifier
for the Java language. Its verification engine is based on a sequent calcu-
lus for dynamic logic, realizing forward symbolic execution of the target
program, whereby all symbolic paths through a program are explored.
Method contracts make verification scalable, because one can prove one
method at a time to be correct relative to its contract. KeY combines
auto-active and fine-grained proof interaction, which is possible both at
the level of the verification target and its specification, as well as at
the level of proof rules and program logic. This makes KeY well-suited
for teaching program verification, but also permits proof debugging at
the source code level. The latter made it possible to verify some of the
most complex Java code to date. The article provides a self-contained
introduction to the working principles and the practical usage of KeY
for anyone with basic knowledge in logic and formal methods.

Keywords: Program verification - Deductive verification - Dynamic Lo-
gic - Java Modeling Language.

"...and the aeroplane shot further away and again,
in a fresh space of sky, began writing a K, an E, a Y perhaps?’
— Virginia Woolf, Mrs. Dalloway

1 Introduction

What is KeY? The KeY tool [3/4[T5] is a state-of-the-art program verification
tool for one of the most widely used programming languages: Java. Its capa-
bilities enable the formal specification and verification of unmodified industrial
Java code at source-code level. Notable examples of its application include the
TimSort effort [27] and, more recently, the verification of a Java implementa-
tion of in-place super scalar sample sort [§], one of the fastest general-purpose
sorting algorithms [I8]. In addition to its role as a program verifier, KeY serves

2 B. Beckert et al.

as a versatile research platform for implementing various formal methods for
Java by leveraging KeY’s symbolic execution engine. For instance, KeY has been
used to facilitate the generation of test cases with high code coverage [6] and
to implement a symbolic-state debugger [39]. The maturity of KeY’s verification
approach and of the tool permit it being taught in BSc- and MSc-level courses.
KeY is an academic, noncommercial tool that can be used freely by anyone (it
is published under GNU Public License V2). It is completely written in Java, so
it can run on any platform for which a Java virtual machine is available.

The roots of the KeY project trace back to 1999, when the continuous devel-
opment and refinement of KeY and its verification methodology was started. On
the occasion of KeY’s 25th birthday, this tutorial serves to showcase the mature
program verification and analysis tool that KeY is today.

This Tutorial, its Accompanying Material, and Further Reading This
tutorial caters to all who want to learn about the KeY tool methodology: New-
comers to the field as well as seasoned researchers in formal methods outside
deductive verification. It offers an exploration of KeY’s underlying methodology,
its capabilities, and practical application. The tutorial covers KeY’s basics while
giving a glimpse at its advanced features. Participants of the live conference tu-
torial gain hands-on experience with KeY. By the end of the tutorial you are
able to actively use KeY for (simple) verification tasks and to understand which
advanced KeY features permit the verification of complex algorithms.

Video recordings of the conference tutorial, the slides, and all presented ex-
amples, as well as the KeY tool itself are available for download at

www.key-project.org/tutorial-fm-2024

For further reading, the book on the KeY system, published in 2016 [4], contains
two tutorial chapters on using the KeY tool, based on both simple (chapter on
“Using the KeY Prover” [7]) and more advanced (chapter on “Formal Verification
with KeY: A Tutorial” [I3]) examples.

KeY’s Verification Methodology in a Nutshell KeY’s deductive program
verification engine is based on a sequent calculus for Java Dynamic Logic [I7].
The calculus rules realize symbolic execution on the target program, whereby
all symbolic paths through a program are explored. Method contracts make
verification scalable, because one can prove one method at a time to be correct
relative to its contract. Contracts in KeY do not need to be expressed in Dynamic
Logic, but can be supplied at the level of source code as Java Modeling Language
(JML) annotations [46].

KeY features a domain-specific textual language (called taclets) for adding
axioms of theories, lemmas, and proof rules. This allows to extend and to tailor
the deduction engine without having to know implementation internals.

KeY'’s Interaction Patterns and User Interface In contrast to most other
program verification tools, KeY seamlessly combines auto-active interaction and

https://www.key-project.org/tutorial-fm-2024

The Java Verification Tool KeY: A Tutorial (preprint) 3

RunZ3| | €@ Y e W C#£Q B = € <& v & Proof caching| @ | UV ‘
(] Loaded Proofs — B ™| (] Sequent - N]
Proofs a.Sticatcus = iRUE, ||
Env. with model src@3:49:38PM idx_0 >= o,
@ BinSearch[BinSearch::binSearch(lint)].JV a.length >= 0, [
a.length >= 1 + idx_0,
] —— »| alidx_ol = v,
= \forall int y;
| £ Proof Slicing | \forall int x; (x <= -1 | y >= a.length | y <= x | alyl >= alx]), L
| & Proof Search Strategy B3 Goals self.<inv>
[&h Proof @ info | ==>
& Proof 4 _omo self = null,
it - = a = null, H
73:times_zero. {heapAtPre:=heap || _a:=a || _v:=v || exc:=null || low:=@ || up:=a.length}
74:add_zero_right \<{
75:inEqSimp_sepPosMonomia try {
76:mul_literals method-frame (
77:commute_or_2 result->result_binSearch,
78:result_binSearch = self.bir source=binSearch(int[], int)@BinSearch,
’ 79:Qne Step Simplification: 1 this=self T
80:int low = 0;) L unwindLoopScope
81:int low; while (low < up) {1 Di s
82:low = 0; Ll diamond_split_termination >
» 83:0ne Step Simplification: 2 £1 Source diamondToBox “Invariant Initially Valid": -
. = . ——— di \replacewith(inv);
84.!nt up = _alength; lc::;l 1:3:(“Invariant Preserved and Used":
85:intup; 10 i . = \replacewith(~
86:up = _a.length; 19 /@ Loop_invariant ¢ Apply rules automay essage has been truncated. See View ToolTip Options.
» CINormal Execution (_a != nu 20 @ loop_invariant (Strategy Macros |
» 87:0ne Step Simplification: 21 @ loop_invariant | show origin ;
92:arrayLengthNotNegative 22 @ assignable \notl Show proof step that created this formula (switches to proof step 87) E
93:arrayLengthlsAnint [| 23 @ decreases up — 1 Show dependency graph around this formula
» 94:0ne Step Simplification: 24 @/ Copvitolclibboard
95:true left _ilt | 25 while (low < up) { | Create abbreviation..
= 06 -hic 26 int mid = low + ((up - low) / 2);
96:hide left 27 it (v ==almid]) { return mid;
@ 97-OPEN GOAL . if (v == almi return mid; ”:
v Null Reference (_a = null) [+ !
K i onl Normal Execution (a != null)

Fig. 1. GUI of the KeY tool: Applicable rules are shown in a context menu after the
user has clicked on the loop in a JavaDL formula.

fine-grained interaction: Interaction is possible both at the level of the Java
verification target and its JML specification (auto-active interaction pattern),
as well as at the level of proof rules and the underlying program logic (fine-
grained interaction pattern). In auto-active verification (used in, for example,
Why3 [22], Frama-C [45], AutoProof [61], VeriFast [42], VerCors [2I], VCC [26],
and Dafny [48]), interaction at the input level (adding, removing, or rephrasing
specifications, adding hints) is user-friendly as it does not require knowledge
and understanding of intermediate proof states. But the lack of insight into the
intermediate proof steps makes it hard to identify which additional specification
annotations might be needed or which need to be rephrased. On the other hand,
fine-grained interaction (most popular with general purpose theorem provers
such as Isabelle [51] or Coq [20]), where the proof is constructed either manually
or with the help of proof scripts (which may use automatic proof tactics), can
give deep insights into possible issues and provides effective control as the user
can inspect partial proofs, but it requires a considerable amount of expertise.

KeY’s front end for interactive proof construction and exploration is a graph-
ical user interface (GUI), see Fig. [1} Upon loading an annotated Java file, proof
obligations are automatically translated into Java Dynamic Logic and presented
in the GUI. This GUI is a central component of KeY. Its design is based on
a point-and-click interaction style to support the user in proof exploration and

4 B. Beckert et al.

proof construction. For instance, the selection of a calculus rule—out of over
1500(!)—is greatly simplified by allowing the user to highlight any syntactical
sub-entity of the proof goal simply by positioning the mouse; a dynamic context
menu will offer only the few proof rules which apply to this entity. For instan-
tiating quantified variables, drag-and-drop mechanisms greatly simplify the use
of instantiation dialogues. Other supported forms of interaction in the context
of proof construction are the inspection of proof trees, the pruning of proof
branches, and unlimited undoing of proof steps.

KeY’s Verification Process The user provides Java source code with anno-
tations written in JML. These consist of requirement specifications as well as
auxiliary specifications such as loop invariants and contracts of called methods.
KeY translates these into proof obligations in Java Dynamic Logic. Now the user
is left with the choice of trying to let the prover verify fully automatically or of
starting interactively by applying calculus rules to the proof obligation. If the
user chooses to start the automated proof search strategy offered by the prover,
the result can be either that (i) the prover succeeds in finding a proof or (ii) the
prover stops after a number of steps with a partial proof. This is the point in the
proof process, where the user gets involved. The user inspects the proof state
and decides whether to continue with fine-grained interaction or to continue in
auto-active style and revise the JML annotation or the source code.

Recently, a lightweight proof scripting language was provided that comple-
ments the GUI’s point-and-click style interaction. It fosters proof reuse and mit-
igates the need to redo the initial part of failed proof attempts by hand [18].

2 Verification Approach

Arguably, the most important structuring concept in programming languages are
pmceduresﬂ (aka functions, methods, routines, etc.). They serve several purposes:
(i) To abbreviate code by a mere signature (unique name plus argument and
return types) that would else have to be repeated many times over; (ii) hence,
a program can be structured into a set of methods (which, in turn, might be
grouped into modules, objects, traits, etc.), each containing closely related code;
(iii) since the desired functionality of a method might not be exactly the same at
each call site, the usage of methods fosters abstraction of different behavior into
a common implementation. Finally, methods can be used to (iv) encapsulate a
computation, i.e. to contain its possible effect on the memory state.

With methods being such a central structuring concept of programs, it is
natural that verification proofs should reflect and be able to benefit from the
structure inherent to the program under verification. In fact, without structural
similarity between the verification target and the proof object, it is exceedingly
difficult to verify complex software systems. This is why most modern deductive
verification approaches, including KeY, are contract-based [30].

3 Since the target language of KeY is Java, we mostly adopt the terminology “method”
in this paper from now on.

The Java Verification Tool KeY: A Tutorial (preprint) 5

2.1 The Principle of Contract-Based Verification

A contract, in the context of software verification, is a specification artifact that
makes it possible to mimic the method structure of a program in a correctness
proof. The central idea is to describe the effect of a possible execution of a given
method in terms of logical formulas. This has a decisive consequence: Whenever
in a proof over a program, it is necessary to reason about a called method,
then, instead of going into the implementation of that method, it is sufficient to
consider the formulas in the method’s contract. This simple and natural approach
has dramatic consequences for program verification: (i) Since contracts consist
not of code, but of formulas, we replace program execution by substitution and
deduction, and (ii) in contrast to code which, in general, admits an unbounded
number of different behaviors, contracts consist of a finite number of formulas.

Together, these two observations enable procedure-modular verification: the
structure of verification proofs follows the structure of methods and an un-
bounded number of possible method executions is described with a finite number
of logical formulas. But how, exactly, are method contracts defined? And how
does one ensure that a given method implementation conforms to its contract?

2.2 Method Contracts

A method contract, similar to a legal contract, has two main aspects: (i) It
specifies the conditions under which it goes into effect and, if so, (ii) it gives
guarantees. It may also (iii) specify collateral effects and give (iv) a temporal
statute on delivery. Translated to the domain of programs and methods:

Definition 1 (Method Contract). A method contract for a method m is a
tuple (pre, post[, mod] [, trm]), where pre and post are formulas, called pre- and
postcondition, respectively, the optional modifier mod is a set expression over
memory locations, and the optional termination witness trm is a first-order term
over a type equipped with a well-order <.

The semantics of a method contract is as follows: if m is started in any ezve-
cution state where pre holds, then, in any state where m terminates, post must
hold as well. If mod is present, then m may change at most the value of memory
locations in mod (otherwise, it may change anything). If trm is present, then
its value must decrease with respect to < before the subsequent call to m, thus
enforcing termination of recursive calls. Otherwise, m may diverge.

Just like legal contracts, method contracts interface to two parties: the client
and the provider. In programs, the client is the code containing a call to m, while
the provider is the implementor of m. It is the latter’s responsibility to ensure
post and, if present, mod and trm, provided that pre holds at the time when m
is called which is the caller’s responsibility.

2.3 Java Modeling Language

So far, the components of contracts are left abstract. In deductive verification,
one typically uses (typed) first-order formulas or expressions to formalize them

6 B. Beckert et al.

and a program logic to express the semantics of contracts. However, languages
such as Java are very much richer than first-order logic which makes it tedious
to write contracts. For this reason, it is common to specify contracts based on
behavioral modeling notations having a rich syntax and thus being closer to
the target language. Contracts written in such a modeling language are then
automatically desugared into first-order and program logic [35]. In KeY we use
the Java Modeling Language (JML) [46].

We introduce JML contracts by example. Listing [I| shows a contract for
binSearch(), a recursive Java implementation of binary search between indices
low (inclusive) and up (exclusive) on an integer array a:

/*@ private normal_behavior

@ requires 0 <= low <= up <= a.length;

@ requires (\forall int x, y; 0 <= x < y < a.length; alx] <= alyl);
@ ensures \result == -1 || low <= \result < up;

@ ensures (\exists int idx; low <= idx < up; alidx] == v) ?

¢! \result >= low && a[\result] == v : \result == -1;

@ assignable \nothing;

@ measured_by up - low;

e/
private int binSearch(int[] a, int v, int low, int up) {
if (low < up) {
int mid = low + ((up - low) / 2);

if (v == al[mid]) { return mid; }
else if (v < a[mid]) { return binSearch(a, v, low, mid); }
else { return binSearch(a, v, mid + 1, up); }
}
return -1;
}

Listing 1. Recursive implementation of binary search with JML specification

We observe that JML is placed in Java comments augmented by a trail-
ing/leading @ sign (the @’s between the first and last are purely cosmetic). JML
permits visibility modifiers (“private”) with the same semantics as Java. Any
side effect-free Java expression may occur in JML, any boolean expression can
serve as a formula. Non-Java keywords in JML expressions are indicated by a
leading backslash. Beyond Java expressions, first-order universal and existential
quantifiers are allowed in JML. These (i) are evaluated over the domain specified
in their variable declaration and (ii) have an optional range expression, as shown.
This idiom, where a quantifier ranges over integers and is further restricted by
upper and lower bounds, is characteristic of specifications over array types.

The JML keyword requires indicates the pre slot of a contract. In the
example, two requires clauses state the various index bounds and that array a
is sorted. If a keyword occurs multiple times, as here, then the conjunction of all
expressions must hold. The JML keyword ensures indicates the post slot of a
contract. The first ensures clause expresses that the returned value is either a
valid index of a or -1. The keyword \result always denotes the returned value
of a method. The second ensures clause is a conditional expression (observe that

The Java Verification Tool KeY: A Tutorial (preprint) 7

quantifiers may appear nested), saying that (i) either the searched element v is
present in a between the given bounds, in which case a valid index, where v can
be found, is returned or else (ii) the constant -1 is returned.

JML keyword assignable indicates the mod slot of a contract. A search
method is expected not to change the computation state, so we specify the
empty set of locations, for which keyword \nothing stands. To prove termina-
tion of the recursive implementation we add a measured_by clause. The top-
level call will be of the form binSearch(a,v,0,a.length), so initially the
measure is equal to the value of a.length. It decreases at each call, because
low < low + ((up - low) / 2) + 1 holds; it is never negative, because the
relation low <= up is maintained.

2.4 Dynamic Logic

How does one prove, for example, that the implementation of binSearch in
Listing [1] conforms to its contract? In KeY we use dynamic logic, a program logic
due to Pratt [53]. In a nutshell, dynamic logic is obtained from Hoare logic [41]
by closing it syntactically with respect to first-order formulas. In consequence,
correctness assertions may be nested which adds useful expressiveness.

Definition 2 (Dynamic Logic, DL). Dynamic logic extends first-order logic
with a binary operator [pl¢ and is inductively defined as follows: (1) FEwvery
first-order formula is a DL formula. (2) If p is a program and ¢ a DL formula,
then [p]¢ is a DL formula.

Formula [p)¢ is valid in a first-order model M if the following holds: For any
execution state s, if p is started in s and it terminates in a state s’, then ¢ is

valid in M and s'.

Obviously, [p]¢ expresses partial correctness of p with respect to postcon-
dition ¢, whenever ¢ is a first-order formula. A first-order contract (pre, post)
for p can be expressed as pre — [p]post, which corresponds to the Hoare triple
{pre}p{post} [41]. The remaining contract elements are discussed later.

DL being syntactically closed, we can define the dual operator () by (p)¢ =
—[p]—¢, which expresses total correctness of p, keeping in mind [p]¢ trivially
holds for non-terminating program and assuming programs are deterministic.

It is important to observe that DL is a modal logic: in general, execut-
ing p changes the execution state. However, it is convenient to assume the
value of first-order variables stays invariant. For example, we might want to
write Vz. (x > 0 — [p](\result > z)) and be sure that z is not changed by p.
To achieve this, it is necessary, unlike in Hoare logic, to sharply differentiate be-
tween memory locations in programs (variables, arrays, fields, . ..) and first-order
variables. The former are modeled as mon-rigid constants and functions whose
interpretation may change from state to state; the latter are, as usual, evaluated
under a rigid first-order model and variable assignment. In consequence, we do
not permit quantification over program variables—this would be a second-order
formula. On the other hand, it makes perfect sense to write a DL formula such
as i =0 — [p]i # 0 and expect it to be valid, for example, when p is ++i.

8 B. Beckert et al.

For the KeY tool, we use a Java-specific extension of dynamic logic called
JavaDL. The main difference to vanilla DL [37] is that JavaDL contains many
predefined rigid and non-rigid first-order functions and predicates, including
suitable first-order theories that model Java features in first-order logic. The
intended first-order models M (Definition [2)) must be defined accordingly. For
example, there is a non-rigid function that returns the length of an array a in the
current execution state as length(a). In JavaDL we also permit Java-style syntax
a.length. JavaDL is a typed first-order logic whose type system includes (i) all
Java primitive and reference types that (ii) are ordered according to Java’s typ-
ing rules. Obviously, all JavaDL terms are assumed to be well-formed according
to Java rules which is enforced by KeY’s parser.

2.5 State Updates

A common approach to perform logical inference in program logic is to com-
pute the weakest precondition [31] of [p]post, i.e. the logically weakest formula
wp(p, post) such that wp(p, post) — [p]post holds. It is constructed from post by
unraveling p backwards. For example, in Hoare calculus wp(x := e, ¢) = ¢[z/e]
(assuming z is a scalar variable and e a simple expression). The weakest pre-
condition computation is iterated until the beginning of a program p is reached.
Branching statements split into several weakest preconditions, such that the
overall result of the process is a finite set of first-order formulas vcy, ..., ve, for
which A, ve; — [p]post holds. The ve; are called werification conditions and can
be discharged, for example, with automated theorem provers or SMT solvers.
Iterative or recursive constructs require strongest invariants to compute wp,
otherwise, (stronger) necessary conditions are obtained.

This verification condition generation (VCG) is simple and amenable to au-
tomation, but is problematic whenever full automation is not achievable: (i) Ver-
ification conditions tend to become large and complex, and then they are difficult
to understand in case they are not provable; (ii) executing a program backwards
is unnatural for humans and makes it hard to follow a failed verification attempt.

In KeY we assume that contracts and loop invariants (Sect. for complex
programs must be at least partially created manually. Getting them right requires
understanding of intermediate proof situations. For this reason the JavaDL in-
ference system is not based on a VCG architecture, but on forward symbolic
execution. Unfortunately, computing the dual of wp(p, post), i.e. the strongest
postcondition of a program started in a state satisfying pre, is expensive and
unnatural. Therefore, we use a technical trick that avoids computing explicit
strongest postconditions:

Definition 3 (Elementary Update). Let v be a program variable of primitive
type and e a simple (not nested) and side effect-free expression such that the
assignment v = e is well-formed. Let e be the first-order representation of eE|
Then v := e is called an elementary update.

4 From now on we adopt the convention that the first-order translation of a Java
expression uses the same letter, but is typeset in Roman font.

The Java Verification Tool KeY: A Tutorial (preprint) 9

The semantics of an elementary update v := e are all state transitions, where
the value of v in the final state is set to the value that e had in the first state.

Updates capture the effect of symbolic state changes and are streamlined to
represent (simple) assignments. By prefixing JavaDL formulas with updates we
can express that a formula is evaluated in the state represented by these updates:

Definition 4 (JavaDL with Updates). If u is an update, ¢ a DL formula,
and e a DL expression, then {u} ¢ is a DL formula and {u}e a DL expression.

2.6 A JavaDL Calculus

For a simple assignment v = e, the DL formulas [v = e; p]¢ and {v := e} [p]¢
are logically equivalent. This observation is the basis for a forward symbolic
execution calculus to prove the validity of JavaDL formulas: For each type of Java
statement st in a program formula [st; p]¢, we compute a finite set of formulas
that implies [st; p]¢ and, therefore, can replace it. These formulas have the form
{di — U;[st;; p|o}si, where U; are updates, the st; typically are (possibly empty)
sub-statements of st, and the ¢; (optional) preconditions (the above replacement
of an assignment is a special case of this general schema). This characterization
permits to further reduce the [st;; p]¢ and so on. All that remains to do is to
turn this schema into a calculus and to design the actual rules.

We assume the reader is familiar with the basics of sequent calculi (see, for ex-
ample, [32]). As usual, we use naming conventions for schema variables: ¢, v, . ..
stand for JavaDL formulas, I" for sets of JavaDL formulas, and I/ denotes an
arbitrary sequence of updates. More schema variables are introduced as needed.
A typical (unary) rule may have the general form of the left rule schema below
where DL formulas ¢, are rewritten while the update U and formulas in I’
remain unchanged (I” might contain assumptions or theories).

LUy = Uy ¢ =
U = Ui ¢ = ¢

To make rule notation more succinct, we drop context formulas and leading
updates in the following like in the rule schema on the right, where contexts
are implicit, but we actually mean the rule on the left. With this convention in
place, we formalize the observation at the beginning of this subsection as the
sequent rule given below on the left. On the right is the rule that stops symbolic
execution once there is no further statement left to evaluate:

— {vi=e}plo = ¢

assignment

emptyBox
— v = espl — s ™Y

Ezample 1. Let us prove correctness of in-place value swap (ignoring possible
arithmetic overflow), as formalized in the sequent:

i=ip,j=jo = [int i,j; i = i+j; j = i-j; 1 = i-3;](i =JoAj =1io)

10 B. Beckert et al.

Symbolic execution of the variable declaration (rule not shown) extends the
signature and has no visible effect. After applying the assignment rule three
times and then rule (emptyBox), we obtain:

P03 = = (1=} 3= g = 3} @ S Ag i) (1)

The example shows that we need rules for applying an update to a first-order
formula or term. Updates can be viewed as explicit substitutions |2], thus update
application is obvious: A straightforward homomorphism on formulas and terms,
except the base case: {v := e} w yields e in case v = w and w, otherwise.

We apply the updates (1), starting with the last one, which yields and,
after two more update applications, the provable first-order sequent :

i=ig,j=Jjo = {i:=1+j}{j:=1-} (E-J =JoAJ =io) (2)
Lo, § = jo = i+j-(i+j-3) = jo A (i+1)-] =g (3)

At this point, two important observations can be made: (i) The first-order
formula on the right of sequent is the weakest precondition of the program
and postcondition in Example [I] Updates allow us to compute it in a forward
fashion. Moreover, it is unnecessary to define substitution on programs (which
is highly complex for languages such as Java), because updates are applied only
on formulas and terms. Difficulties, such as aliasing or side effects, are dealt with
at the level of symbolic execution rules, as we shall see below. (ii) There is a
potential inefficiency in the so far lazily applied updates. For example, when some
code is unreachable, that is discovered late. In addition, iterative substitutions
can blow up term size drastically. This is mitigated by performing eager update
simplification. To this end, we define parallel updates vy := ey || || vn = en,
where each slot is an elementary update and all v; are different.

The semantics of parallel updates are those state transitions, where all the
elementary updates are performed in parallel, i.e. the old values of the right
hand side are used in each elementary update. For example, the parallel update
j:=1]||i:= j simultaneously sets i to the previous value of j and vice versa.
Since all left-hand sides in a parallel update are different, this is well-defined
(for the moment, we ignore aliasing which is discussed in Section . To turn a
sequence of elementary updates into a parallel update, the following rewrite rule
is applied, where u is any, possibly parallel, update:

{u} {v:=e} ~ {u\v]|v:={u}e} seqToPar

where update u\v is identical to wu, except elementary updates with left-hand

side v are dropped. This is to keep left-hand sides unique and is justified by the

fact that any v occurring in u on the left is overwritten by the later update of v.
If we apply rule (seqToPar) to the formula in sequent , we obtain

{i=1+j[J = G+-jH{i=1-]} (A =joAJ =ro) .
Then, before applying rule (seqToPar) again, it is possible to perform arithmetic
simplification on the expression (i+j)-j. Such a strategy of eager update par-

allelization and simplification helps to keep symbolic expressions small and is
crucial for performance.

The Java Verification Tool KeY: A Tutorial (preprint) 11

2.7 Forward Symbolic Execution of Straight-line Programs

To be able to verify straight-line programs with the JavaDL calculus, two more
components are needed: Handling complex expressions and conditional state-
ments. We start with the former. Typically, in a rich language such as Java is
that an array assignment could be of the form e[e’] = e”, where each of e, &, &”
might be a complex expression. Moreover, evaluation of e” can incur side effects
that may or may not influence evaluation of &’ (i++ vs. ++i). Symbolic execution
must respect Java’s evaluation rules and record side effects at the correct place.
Not surprisingly, a large number of rules are required. Luckily, all of these rules
follow the same simple principles. We discuss one typical representative:

= [Tnse v; v = nse; v[e] = e/§p]¢

; assignmentUnfoldLeft ArrayRef
= [nselel = €';p|¢

This rule handles the case when the array reference nse is not a simple expression
and possibly has side effects. First a fresh variable v is allocated that holds the
reference expression nse. Subsequently, the original assignment is unfolded and
nse replaced with v. The premise can now be symbolically executed, relying on
v being simple. Of course, further rules must be applied to deal with e, e’.

All rules for complex assignments follow this simple schema: (i) Memorize a
non-simple sub-expression, (ii) unfold a complex expression with the memorized
value, (iii) arrange the sequence of assignments to reflect Java’s evaluation rules.

The same principle is used to ensure that guards of conditionals and loops
are side effect-free, simple expressions before they are symbolically executed. In
consequence, the rule for conditionals is straightforward:

se = TRUE = [p;r]¢p se= FALSE = [q;7]¢
— [if (se) p else ¢;7]¢

ifElseSplit

2.8 Procedure-modular Verification: Contracts and Method Calls

To verify the example in Listing [I, we need to handle recursive procedure calls
(for loops, see Section. We focus on a simple case to avoid the main idea getting
buried under technicalities: Assume a method signature static T m(T’ arg);
with a contract (pre,post). We design a JavaDL rule that, instead of inlining
m’s implementation, uses its contract (how to verify contracts is shown next). In
the conclusion of the rule below, we assign the result of a call to m with a simple
argument se compatible to T/ to a simple location expression v compatible to T.
Further, we assume that pre’ and post’ are the desugared first-order translations
of pre and post, respectively, where res corresponds to JML’s \result.

= {arg := se} pre’ = {res :=c,}(post’ — {v:=res}[p]d)
= [v = m(se); p|o

(4)

The left premise validates that m’s contract goes into effect by proving the
precondition with se as the value of arg. The right premise uses the postcondition
in the remaining proof. To this end, first res is initialized with an unknown value

12 B. Beckert et al.

(fresh Skolem constant ¢,), then post’ is added as an assumption. Whatever post’
knows about res is propagated to v and can be used to establish [p]¢.

The general case for method contract application can be more complicated.
Specifically, for non-static method calls (dynamic dispatch), the implementation
of m might be impossible to determine statically. In this case, the verification
branches into different cases, one for each potential implementation. In addition,
the caller expression must be correctly set up and possible side effects of the call,
as described in the assignable clause, must be considered. Finally, m might
terminate with an exception. We refer to [34] for a full treatment.

To formalize verification of a contract’s correctness is easy in JavaDL, because
the modal correctness formulas are closely aligned to the semantics of contracts.
With the terminology from above, to verify a contract, we prove the following
sequent (arg is the name of m’s parameter used in pre’):

pre’ = [res = m(arg) ;]post’

To avoid a circular argument, rule is not permitted, but m is inlined. Again,
this does not yet account for the possibility that m may throw an exception. To
exclude this case, one can simply wrap the method call in a try statement and
add a check to the postcondition ensuring no exception was thrown.

We close the section observing that the expressiveness of dynamic logic per-
mits to formalize method contract correctness and method contract usage as a
single JavaDL formula resp. a JavaDL calculus rule. This is in contrast to VCG
style verification based on Hoare logic, where this must be encoded with numer-
ous assert statements dispersed throughout the program under verification.

2.9 Proving the Contract of Binary Search

We prove the contract shown in Listing[I} Thus, we expect the following JavaDL
formula to be provable:

{v:=wvg||low:=1||up := u} (pre’ — (res = binSearch(a,v,low,up) ;)post’)

Observe that this is a total correctness formula while the rules so far were for-
mulated with partial correctness operators. Fortunately, the calculus for partial
and total correctness is exactly the same, except for Java constructs with poten-
tially unbounded behavior. These are recursive calls and loops. To deal with the
former, a check for the measure to decrease must be added to rule . When
provable, total correctness of all method contracts in a given program implies
total correctness of any program. This follows from a result proved in [49].

Before we can prove the DL formula above with KeY, there is one last loose
end to tie up: It concerns how assignments involving array types are handled.
Due to the considerations in Section 2.7l we can assume that all locations are
simple and side effect-free. Yet the assignment rules—below the one for array
access on the right of the sequent—are relatively complex:

The Java Verification Tool KeY: A Tutorial (preprint) 13

a#null, 0 <e<a.length = {v:=ale]}[p]¢
a=null — [throw new NullPointerException(); p|¢
a#null, 0 >e V e>a.length = [throw new AIOoBException(); p|¢

— [v = alel;plo

This rule (as other array rules) reflects that in Java an array access can throw
aNullPointerException or an ArrayIndexOutOfBoundsException, which can-
not be statically excluded (for symbolic execution of exceptions, see Section.
The actual update happens in the first premise. Array updates v := ale] consti-
tute a new class of elementary updates with a dedicated set of update application
and simplification rules, reflecting the semantics of Java arrays. In particular,
these rules take into account that in Java array references might be aliased.

3 Towards Real Java

So far we learned how to specify and verify a simple program, but the preceding
section left some gaps. The symbolic execution rules discussed above only con-
sider updates on local variables without aliasing and, for the most part, without
exceptional behavior. Furthermore, just like in Hoare calculus, KeY’s JavaDL
calculus requires loop invariants. In this section, we introduce the concepts nec-
essary to specify and verify the iterative version of binary search in Listing [2} the
heap model, exceptions and other abnormal termination, and loop invariants.

3.1 Aliasing: State Updates on the Heap

A major difficulty in verifying object-oriented programs is aliasing on the heap.
Consider an assignment to a field o.f. Then, the assignment rule from Section 2]
no longer suffices because changing the value of o.f might also change the value
of 02.f if o = 02. To accommodate aliasing, JavaDL models the heap as an array
with indices (o, f) (called heap locations), where o is a first-order expression of
type Object and f is a first-order expression of type Field, the type of field
references. The axiomatization is based on the theory of arrays [50], but it is
extended by axioms specific to JavaDL. The list of these axioms is found in [57],
here we explain the functions defined through these axioms informally.

Given a program variable h of type Heap, a heap location (o, f), and an
expression e, the expression store(h, o, f,e) evaluates to a heap identical to h
except that the value of location (o, f) is e. For any Java type A, there is a
function select 4 such that select4(h, o, f) evaluates either to the value at the
location (o, f), if that value has type A, or to an underspecified value otherwise.

Now we can give an update rule for field assignments. If either side of an
assignment is a complex expression, we first apply unfolding rules similar to
the rule (assignmentUnfoldLeftArrayRef) from Section For a field assign-
ment where both sides are simple expressions, we have the following rule. Sim-
ilar to the rule seen in Section we need a premise to deal with a possible
NullPointerException. The first premise translates the assignment to an up-
date using the store function on the heap.

14 B. Beckert et al.

/*Q private normal_behavior
@ requires (\exists int idx; O <= idx < a.length; alidx] == v);
@ requires (\forall int x, y; 0 <= x < y < a.length; alx] <= alyl);
@ ensures 0 <= \result < a.length;
@ ensures al[\result] == v;
@ assignable \nothing;
@ also private exceptional_behavior
@ requires !'(\exists int idx; 0 <= idx < a.length; alidx] == v);
@ assignable \nothing;
@ signals_only NoSuchElementException;
Q@x/
private int binSearch(int[] a, int v) {
int low = O;
int up = a.length;
/*@ loop_invariant 0 <= low <= up <= a.length;
@ loop_invariant (\forall int x; 0 <= x < low; alx] != v);
@ loop_invariant (\forall int x; up <= x < a.length; alx] !'= v);
@ assignable \nothing;
Q@ decreases up - low;
@x/
while (low < up) {
int mid = low + ((up - low) / 2);

if (v == almid]) { return mid; }
else if (v < a[mid]) { up = mid; }
else { low = mid + 1; }

}

throw new NoSuchElementException() ;

Listing 2. Iterative implementation of binary search with JML specification

v #null —> {heap := storey (heap, o, f,v)} [p|¢
v =null = [throw new NullPointerException();p|¢

= [o0.f = v;p|¢

assignmentToField

To support modular verification as presented in Section 2] we need a way to
model the effects of a method call on the heap. KeY uses a variant of dynamic
frames [4358], an approach which uses sets of heap locations as first-class logical
variables. To model the heap after a method call, we use a function which takes
a heap h and a location set s and replaces the value of any location in s by an
unknown value. This is accomplished by the anonymization function anon: The
expression anon(h, s, h') evaluates to a heap equal to h except that all values of
locations in s are taken from h'. If A’ occurs nowhere else in the sequent, then
these values are unknown. Then, exactly the information in the postcondition
is what is known about the new values. Our anonymization is related to the
“havoc” notion in Boogie [11].

The Java Verification Tool KeY: A Tutorial (preprint) 15

3.2 Loop Invariants in JML and JavaDL

To verify unbounded loops, KeY requires a manually specified loop invariant. A
loop invariant is a formula that holds before entering the loop and after every
loop iteration. Additionally, we need a termination witness (called loop variant)
to prove total correctness.

The loop invariant in Listing [2] consists of three clauses: The first limits the
range of the index variables low and up, like in the precondition of the recursive
version. The other two clauses differ from the recursive contract. The recursive
contract states that the searched value is between the indices 1low and up. When
using a loop invariant, we must instead state that the searched value is not
between the indices 0 and low nor between up and a.length. (KeY also permits
contract-like, recursive loop specifications [62], but this is beyond the scope of
this tutorial).

The loop variant, specified by decreases, is an expression whose value is
always at least 0 but strictly decreases with every loop iteration. Finally, the loop
needs an assignable condition to prove the surrounding method’s assignable
condition.

When encountering a loop in JavaDL’s calculus, one must prove three claims:
(i) The loop invariant holds when entering the loop; (ii) the loop invariant is
preserved by the loop body; (iii) after the loop terminates, the invariant ensures
that the postcondition holds after executing the rest of the program. These claims
are captured in the three premises of the following rule (a simplified version that
only applies to loops without side effects in the loop guard and without abnormal
termination; it also does not consider the loop variant):

I' = Uinv
I' = UA((inv A cond = TRUE) — [body]inv A frame)
I' = UA((inv A cond = FALSE) — [rw]¢)

I' = U [r while (cond) { body } w|¢

simplelnv

Here, we drop the notational convention established in Section [2.6] and write
the update U and antecedent I explicitly. We also write w for the rest of the
program and 7 for the inactive prefir, which may include a sequence of opening
braces { and initial try blocks “try {”. The initial update U captures the state of
symbolic execution before the loop. The first premise ensures that the invariant
inv holds upon entering the loop. The second and third premise contain the

update A = {heap := anon(heap, mod,as) |11 := c1||---||1n := ¢n}, Here,
mod corresponds to the assignable clause, aj; is an unknown heap (i.e., a heap
which occurs nowhere else in the sequent) and 1; := ¢; are updates which set

any local variable 1; written in the loop body to an unknown value ¢;. The two
updates U.A are applied sequentially to transfer that part of the symbolic state
that is unchanged by the loop across the loop boundary. If, in that partially
anonymized state, the invariant and loop guard both hold, executing the loop
body must preserve the invariant and the frame condition which ensures that any
heap location outside mod is unchanged. If the invariant holds but the loop guard

16 B. Beckert et al.

does not (the loop terminates), the postcondition must hold after executing the
program rest w.

3.3 Exceptions in JML and JavaDL

In Section [2] we considered programs that terminate normally. But the version of
binSearch in Listing [2| throws an exception if the element is not found (instead
of returning -1). To specify this, we add a second contract using the keyword
also. That contract starts with exceptional_behavior, which specifies that
the method terminates with an exception if the precondition holds. The keyword
signals_only followed by a list of exception types states that the method throws
no other exceptions except those listed.

The translation to JavaDL combines both contracts: The JavaDL precondi-
tion is the disjunction pre V pre’ of the two preconditions, and the postcondition
is

(pre — exc =null A post) A (pre’ — instanceOfyggg(exc))

where post is the translation of the ensures clause and exc is a reserved program
variable set when a throw statement is symbolically executed.

3.4 Integer Semantics

Recall that in Example [I} we glossed over the issue of arithmetic overflows.
We treated Java’s int type as the mathematical integers Z and all arithmetic
operations on int as their mathematical counterpart (our discussion focuses on
integers, but similar considerations apply to byte/long). Clearly, it is unsound
to disregard overflows. Consider the DL formula

i>0—[i=1i+ 1;](1>0)

At first glance, it seems to be valid. But in case i’s value is the maximal int
value, there is an overflow resulting in a negative value of i. To render the
formula valid, we can strengthen the precondition by i < Integer.MAX_VALUE.

To permit flexibility in the choice of the arithmetic model, KeY translates op-
erations +, -, *, etc., to abstract JavaDL functions during symbolic execution. For
example, a + b becomes javaAddInt(a,b) (assuming that a,b are of type int).
The interpretation of these abstract functions can be configured in the KeY tool
(option “intrules”). Three options for integer semantics are available:

(I) The default integer semantics, arithmeticSemanticslgnoringOF, translates
to Z, as we did in Example [I} This semantics allows for easy prototyping and
teaching—also specifications tend to be much simpler—but it is unsound. Nor
is this semantics complete, as some valid formulas cannot be proven, such as
i = Integer .MAX_VALUE — [i = i + 1;](i < 0). (II) To verify a program
that does not rely on overflows, the semantics checkedOverflow is suitable. It
checks that for all abstract functions, the result is in the value range of int,
i.e. it proves the absence of overflows. While checkedOverflow is sound, it is

The Java Verification Tool KeY: A Tutorial (preprint) 17

not complete. If an intentional overflow occurs, the proof cannot be finished.
Both proof and specification efforts tend to be bigger with this option than for
the mathematical semantics. (III) The javaSemantics accurately models most
operations on Java’s int and provides soundness and completeness. All abstract
functions are translated to accurate calculations for int, at the cost of even more
complex proofs.

Integer semantics options let the user trade off the complexity of proofs and
specifications against the accuracy of the modeling: Is an exact model of Java’s
int required which will complicate the proof? Is showing the absence of overflows
sufficient? Is the limited accuracy of mathematical integers acceptable? The
answer will depend on the specific case.

Floating Point Numbers Over the last years, KeY has added support for
floating point numbers, using a combination of theories in taclets and SMT
solvers. See [I] for details and limitations.

4 Inside KeY’s Core

4.1 Prover Architecture

As discussed in Section 2.5 KeY does not have a VCG architecture. Unlike such
tools as OpenJML [25] or Dafny [47], KeY comes with a built-in theorem prover,
but can also use external SMT solvers. It works directly on Java source code
avoiding an intermediate representation. Instead, it utilizes updates to achieve
forward symbolic execution, relying on its JavaDL calculus and automatic prover
to close goals. The latter is strong enough in many complex situations.

In addition to avoiding the limitations of VCG discussed in Section this
approach has four main advantages: (I) Proofs generated by KeY are self-con-
tained without a reference to—or trust placed in—external tools. It is always
possible to examine the current proof state in KeY without the need to under-
stand, for example, the SMTLIB format [I2]. (II) The user of the KeY prover
and the tool itself work on the same structure and goals. This simplifies un-
derstanding of proofs, the underlying calculus, and potential errors. (III) The
automation capabilities of KeY enable it to simplify any JavaDL formula, not
only quantifier-free first-order expressions, during symbolic execution. Since the
automation strategies aggressively simplify updates, first-order formulas, and
terms while symbolically executing a program, many branches in a proof tree
are closed early or are not created in the first place. Simplification is crucial to
lessen the impact of path explosion—a well-known issue in symbolic execution [9].
(IV) KeY generates an explicit, self-contained proof object. A KeY proof can be
saved and reloaded, even when it is incomplete. A proof consists of the claim
to be proven plus a series of rule applications. This permits to share and re—
play proofs, increasing trust in KeY artifacts and enabling reproducible results.
Hence, the trusted code base is only KeY and its 25 years of experience.

18 B. Beckert et al.

The downside of the KeY architecture is that, when verifying exceptionally
complex code, KeY’s automatic capabilities may be insufficient. In this case,
KeY can export a (first-order) goal to SMTLIB format and hand it to an SMT
solver, such as Z3 [29] or cve5 [I0]. This is especially useful for floating point
numbers (see Section . In this manner, KeY can still profit from the advances
in SMT-solving technology, albeit at the cost of sacrificing self-contained proof
objects.

4.2 Taclets

As a proof assistant, KeY allows significant flexibility regarding its underlying
calculus. Most rules of the JavaDL calculus are not hard-coded but written in
a simple, but expressive, language for such rules called taclets. We provide a
succinct description of taclets. For a more in-depth coverage of taclets, their
features, and correctness, see [55].

Taclets are very versatile and permit axiomatization of data structures, def-
inition of symbolic execution rules, rules for propositional and first-order logic,
etc. They allow users to define their own rules to accommodate a specific verifi-
cation purpose. To ensure soundness of first-order taclets, KeY generates a proof
obligation expressing the soundness of the taclet, which is proven in KeY itself.

For simplicity, we only present one form of taclets: rewrite taclets. Recall the
rule in Section [2.6] for symbolically executing assignments. Listing [3] defines the
same rule in form of a taclets. The assignment rule has four parts:(i) A defini-
tion of schema variables matching formulas (post), program variables (#loc),
and side effect-free expressions (#se); (ii) a \find clause, defining the formula
“in focus,” i.e., to be replaced in the premise—in this case a modality of any
kind containing an assignment; (iii) \replacewith providing the formulas in
the premises; (iv) a \heuristics clause, instructing the automatic prover when
this rule should be applied.
assignment {

\formula post; \program Variable #loc; \program SimpleExpression #se;
\find (\modality{#allmodal}{.. #loc = #se; ...}\endmodality(post))
\replacewith({#loc:=#se}\modality{#allmodal}{.. ...}\endmodality(post))
\heuristics(simplify_prog)

1

Listing 3. A taclet defining the rule for symbolically executing an assignment.
Observe the opening and closing ellipses (.. and .. .) in the modality. These

stand for the inactive prefix m and the rest of the program w, respectively, as
introduced in Section

5 Advanced Concepts for Object-Orientation

For the verification of non-trivial object-oriented programs, two specification fea-
tures are important: (i) Data abstraction by which the content of data structures
is represented using mathematical values thus hiding implementation details and

The Java Verification Tool KeY: A Tutorial (preprint) 19

(ii) data encapsulation that allows reasoning about data structures locally pro-
vided that any structure operates only on memory locations belonging to itself.

5.1 Ghost and Model Fields, Model Methods

Abstraction is relevant for programs operating on non-trivial data structures,
as dealing with the details and memory layouts of data structure implementa-
tions unnecessarily increases proof complexity. So it is important (and often an
enabling factor) to possess means to abstract from implementation details and
to work with abstract values describing and capturing the state of data struc-
ture objects. For object-oriented programs, the state of an object is often best
captured abstractly in form of one or more values in mathematical data types.

The canonical abstraction of the state of a doubly linked list implementation,
for example, is a sequence of its entries. The expected behavior of list operations
can be described in contracts using this abstraction. A client using such lists does
not need to know anything about the data structure’s actual implementation.
KeY supports three means to introduce abstract values as JML annotations into
class files: Ghost fields, model fields, and model methods.

Ghost fields (and variables) are fields (and variables) that only exist for ver-
ification purposes. Since JML annotations are written in comments, they are
ignored during compilation. For verification, however, ghost entities are treated
like normal Java fields and variables. In particular, ghost fields give rise to heap
locations as outlined in Section Ghost entities in JML may have types which
are only available in JML but not in Java. In assignments, expressions that go
beyond the expressiveness of Java (like quantifiers) can be used with ghost vari-
ables. Ghost fields and variables are often used to store redundant information
or intermediate results, which are not required for computations at run time,
but can considerably simplify deductive verification.

The example in Listing [d]illustrates how a ghost field is used to abstract from
a concrete data structure. The List interface declares the ghost field content
holding the list’s abstraction, which is a sequence of values. The abstraction
suffices to specify the contract of method get, which obtains the integer value
stored at index idx. The method add ensures that a value is appended to the
content. It is specified using the sequence operator “+’ in KeY’s JML. The
implementing class ArrayList uses an array that actually holds the list’s values.
The connection between the abstract list and its implementation is established
via a coupling invariant. In this case the function \array2seq can be used to
read the sequence of values from an array.
interface List {

//@ instance ghost \seq content;

//@ requires 0 <= idx < content.length;
//@ ensures \result == (int)content[i];
int get(int idx);

//@ ensures content == \old(content) + \seq(value);
void add(int value);

20 B. Beckert et al.

}
class ArrayList implements List {
int[] array;
//@ invariant content == \array2seq(array);

Listing 4. Implementation and specification of a list with model entities

Modifications of ghost fields must be made explicitly using assignments in
contracts. For example, the contract of method add (not shown here, but avail-
able in the tutorial sources), must set content explicitly to the new value.

Model fields are, like ghost fields, only visible during verification and not at
compile time. However, unlike ghost fields, model fields do not have a state of
their own but are observer symbols whose value is computed from the current
heap state. They are more like side effect-free Java query methods than Java
fields. A model field is declared by adding the JML modifier model.

The benefit of model fields is that they need not (and cannot) be updated
explicitly since they “automatically” change their value. However, verification of
programs with model fields usually needs significantly more interactions than
programs with ghost fields, and proofs tend to be larger and more complex.

Model methods are a generalization of model fields in the sense that they
have arguments. They are side effect-free methods declared in JML annotations.

5.2 Dynamic Frames

Data encapsulation is closely related to data abstraction: If a data structure
is well encapsulated, then its abstract value does not depend on memory areas
outside the data structure. This is known as the framing problem: How to specify
and verify that the abstract state of an object does not interfere with another
unrelated object? Framing is usually addressed by requiring that the memory
locations of data structures do not overlap. Over the last two decades, mainly
three concepts to solve the framing problem have emerged: Separation logic [54],
ownership type systems [30], and dynamic frames [44].

The KeY tool implements dynamic frames [58|, where the set of locations
that “belong” to a data structure, i.e. those locations that can be read or written
by its operations are explicitly modeled as a set of memory locations, often called
the footprint of an object. A ghost field is used to model this location set.

Revisiting the List example, in Listing [5] we specify at the interface level
that the get query method may at most read memory locations in the foot-
print (using the keyword accessible). The function add may modify at most
these locations (specified using assignable). When the footprint grows in add,
only fresh locations that were not yet allocated prior to the call may be added
to ensure that footprints remain separate. This is a typical specification pat-
tern used when specifying and verifying object-oriented programs with dynamic
frames. The List example is covered in the tutorial material (see Part II in
Appendix ?77).

The Java Verification Tool KeY: A Tutorial (preprint) 21

interface List {
//@ instance ghost \locset footprint;
//@ accessible footprint;
//@ assignable \nothing;
int get(int index);
//@ assignable footprint;
//@ ensures \new_elems_fresh(footprint);
void add(int);

Listing 5. Specification pattern using dynamic frames for the list interface

The value of a query invocation can only change if an element in the footprint
is modified. The following axiom is available in KeY:

(Vo,f. (0,f) € list.footprint — select(hy, o, f) = select(hsg, o,f)) —
get(h;,list,idx) = get(hg,list,idz) (5)

It expresses that the get function computes the same result in heaps hq, hy if all
locations in footprint hold the same values in hy, ho. When lists are known to
have disjoint footprints, then the dynamic frame axiom allows to infer that
adding an element to one list has no influence on a query to the other list.

6 KeY as a Tool for the Community

Due to its maturity and openness, KeY is a valuable tool for the community.
This includes the use of KeY as a tool for verification projects or for teaching,
but also the use of KeY in research projects for building new tools on top of it.

6.1 KeY as a Tool to Verify Real-World Software

Over the years, a plethora of case studies has been conducted, where KeY was
used to verify real-world algorithms and data structures. We present a selection;
a more comprehensive list is on the KeY project website.

A verification case study that received much attention is TimSort, an al-
gorithm combining merge and insertion sort. It is prominently used as Java’s
default for sorting collections of objects. However, that implementation had a
bug and crashed for certain large collections. This issue was detected and ex-
plained in [28], a fixed version has been presented and verified with KeY in [27].

While the JDK uses TimSort to sort collections of objects, collections of prim-
itive types are sorted using Dual Pivot Quicksort, which is a standard quicksort
that partitions into three instead of into two parts. The implementation pro-
vided by the JDK has been proven correct in [I9], which includes the sortedness
property, the permutation property, and the absence of integer overflows.

In [23], the core of the JDK’s Identity Hash Map was specified and verified.
In that case study, a novelty is the use of several JML tools: KeY, the bounded

22 B. Beckert et al.

model checker JJBMC [16], and OpenJML [24], to exploit the strengths of each
of them and jointly verify a large project.

Researchers at CWI showed that Java’s LinkedList implementation breaks
when lists with more than 23! elements are created [40]. They propose a fixed
version and verified it successfully with KeY. This case study shows the capability
of KeY to reason about bounded integer data types and handle overflows.

The most recent large case study performed with KeY is the verification of
the sorting algorithm in-place super scalar sample sort [I8]. This algorithm is
efficient on modern machines, as it avoids branch mispredictions, allows high
instruction parallelism by reducing data dependencies in the innermost loops,
and it is very cache-efficient. This case study shows that with KeY it is possible to
verify state-of-the-art sorting algorithms of considerable size (in this case about
900 lines of Java) and complexity without having to modify the source code.

6.2 KeY for Teaching

KeY is well suited for teaching. It comes with a GUI that provides context-
specific actions, such as the rules that are applicable to the specific selected
term. It provides means to inspect partial proofs and to explore the state of
the prover interactively. The approach and the tool are very mature, and a lot
of material exists that describes them in great detail (e.g., [4I5U14]). For these
reasons, KeY is used in many courses at various universities, a list can be found
on the website of the pro jectE| There is also a plethora of course notes and slides.

6.3 KeY as Library and Research Platform

In addition to the use of KeY as a standalone GUI-centric tool, it is possible
to use KeY as a platform for research or to include it in a project as a library
employing its symbolic execution and automated reasoning capabilities. One tool
that uses KeY in such a way is CorC [56], which is an Eclipse-based tool that
allows users to construct correct programs by stepwise refinement. To verify that
the Java statements adhere to their “contracts” (pre- and postconditions created
via refinement from the top-level specifications), CorC calls KeY as a backend.

KeYmaera [52] is an offspring of KeY that can be used to prove properties
about cyber-physical systems, which are systems that have continuous behav-
ior as well as discrete state changes (for example cars or planes). However, its
successor KeYmaera X [33] is a green-field implementation and does not share a
common code base with KeY anymore.

The Symbolic Execution Debugger [38] can be used to symbolically execute a
program and obtain a tree of possible program paths. This helps to understand
program and specification and to detect bugs, for example when unexpected
paths are present or expected ones are missing. More recently, the Refinity tool
[59] extends KeY by abstract ezecution [60] and lets one prove the correctness of
refactorings. Both tools make use of KeY as a library.

% lhttps:/ /www.key-project.org/applications, key-for-teaching/

https://www.key-project.org/applications/key-for-teaching/

The Java Verification Tool KeY: A Tutorial (preprint) 23

6.4 Open Source and Open Development

KeY has been open source since the inception of the project in 1999. In February
2023 the sources were moved to a public repository on GitHubﬁ The open devel-
opment model facilitates bug reports and feature requests. GitHub also provides
the possibility to contact the developers.

The annual KeY Symposium takes place since 2002. With an international
field of participants, it has been a breeding ground for new ideas and features
for KeY. Growing over the years, the most recent edition has been the largest
ever with about 40 attendees. To transfer knowledge from experienced to newer
developers, two hackathons have been organized (in 2018 and 2024). Both events
were a great success and led to multiple new features and bug fixes.

Acknowledgments. This work was supported by the DFG projects BE 2334/9-1,
BU 2924/3-1, HA 2617/9-1, and UL 433/3-1 as well as the Helmholtz topic Engineering
Secure Systems (KASTEL) and the Helmholtz pilot program KiKIT.

References

1. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive verifica-
tion of floating-point Java programs in KeY. In: Groote, J.F., Larsen, K.G. (eds.)
TACAS 2021. Proceedings. pp. 242-261. No. 12652 in LNCS, Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1 13

2. Abrial, J.R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press (Aug 1996)

3. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hahnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool: Integrating
object oriented design and formal verification. Software and System Modeling 4(1),
32-54 (2005). https://doi.org/10.1007 /s10270-004-0058-x

4. Ahrendt, W., Beckert, B., Bubel, R., Héhnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification — The KeY Book: From Theory to Practice. No.
10001 in Lecture Notes in Computer Science, Springer (2016). https://doi.org/10.
1007/978-3-319-49812-6

5. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Ulbrich, M. (eds.): Deductive
Software Verification: Future Perspectives. No. 12345 in LNCS, Springer (2020)

6. Ahrendt, W., Gladisch, C., Herda, M.: Proof-based test case generation.
In: Ahrendt et al. [4], chap. 12, pp. 415-451. https://doi.org/10.1007/
973-3-319-49812-6 12

7. Ahrendt, W., Grebing, S.: Using the KeY prover. In: Ahrendt et al. [4], chap. 15,
pp. 495-539. https://doi.org/10.1007,/978-3-319-49812-6 15

8. Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: Engineering in-place (shared-
memory) sorting algorithms. Computing Research Repository (CoRR) (Sept 2020)

9. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Computing Surveys (CSUR) 51(3), 50 (2018).
https://doi.org/10.1145/3182657

5 lhttps://github.com/KeYProject /key

https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_15
https://doi.org/10.1007/978-3-319-49812-6_15
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://github.com/KeYProject/key

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. Beckert et al.

Barbosa, H., Barrett, C.-W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Notzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) TACAS 2022, Proceedings,
Part I. pp. 415-442. No. 13243 in LNCS, Springer (2022). https://doi.org/10.1007/
973-3-030-99524-9 24

Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO. pp. 364-387. Springer,
Berlin, Heidelberg (2006)

Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2016)

Beckert, B., Hahnle, R., Hentschel, M., Schmitt, P.H.: Formal verification with
KeY: A tutorial. In: Ahrendt et al. [4], chap. 16, pp. 541-570. https://doi.org/10.
1007/978-3-319-49812-6 16

Beckert, B., Hiahnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. No. 4334 in LNCS, Springer (2006)

Beckert, B., Hihnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach — Foreword by K. Rustan M. Leino. No. 4334 in LNCS,
Springer (2007), https://doi.org/10.1007,/978-3-540-69061-0

Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation: Verification
Principles. pp. 60-80. No. 12476 in LNCS, Springer International Publishing, Cham
(2020). |https://doi.org/10.1007/978-3-030-61362-4 4

Beckert, B., Klebanov, V., Weif, B.: Dynamic logic for Java. In: Ahrendt et al. [4],
chap. 3, pp. 49-106. https://doi.org/10.1007/978-3-319-49812-6 3

Beckert, B., Sanders, P., Ulbrich, M.: Formally verifying an efficient sorter. In:
Finkbeiner, B., Kovacs, L. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 30th Intl. Conf. TACAS, Luxembourg City, Luxembourg.
LNCS, Springer (2024). https://doi.org/10.1007/978-3-031-57246-3 15

Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Paskevich, A., Wies, T. (eds.) Verified Software. Theories, Tools,
and Experiments. pp. 35—48. No. 10712 in LNCS, Springer International Publish-
ing, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 3

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) Int.
Conlf. on integrated Formal Methodes. No. 10510 in LNCS, Springer (2017). https:
//doi.org/10.1007/978-3-319-66845-1 7

Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 53—-64. Wroctaw, Poland (August 2011)

de Boer, M., de Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: For-
mal specification and verification of JDK’s identity hash map implementation.
In: ter Beek, M.H., Monahan, R. (eds.) Integrated Formal Methods. pp. 45—
62. No. 13274 in LNCS, Springer International Publishing, Cham (2022). https:
//doi.org/10.1007/978-3-031-07727-2 4

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-49812-6_16
https://doi.org/10.1007/978-3-319-49812-6_16
https://doi.org/10.1007/978-3-319-49812-6_16
https://doi.org/10.1007/978-3-319-49812-6_16
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

The Java Verification Tool KeY: A Tutorial (preprint) 25

Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods. pp. 472—
479. No. 6617 in LNCS, Springer, Berlin, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20398-5 35

Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) 1st Workshop on
Formal Integrated Development Environment, F-IDE, Grenoble, France. pp. 79—
92. No. 149 in EPTCS (2014)

Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-
based modular verification of concurrent C. In: Intl. Conf. on Software Engineering
— Companion Volume. pp. 429-430 (2009)

De Gouw, S., De Boer, F.S., Bubel, R., Hahnle, R., Rot, J., Steinhéfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Automated Reasoning 62(6)
(2019)

De Gouw, S., Rot, J., De Boer, F.S., Bubel, R., Hihnle, R.: OpenJDK’s
java.utils.collection.sort() is broken: The good, the bad and the worst case. In:
Kroening, D., Pasareanu, C. (eds.) Proc. 27th Intl. Conf. on Computer Aided Ver-
ification (CAV), San Francisco. pp. 273-289. No. 9206 in LNCS, Springer (Jul
2015)

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. pp.
337-340. Springer (2008)

Dietl, W., Miiller, P.: Universes: Lightweight ownership for JML. J. Object Technol.
4(8), 5-32 (2005). [attps://doi.org/10.5381/JOT.2005.4.8.A1

Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)

Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Springer-
Verlag, New York, 2 edn. (1996)

Fulton, N., Mitsch, S., Quesel, J., Volp, M., Platzer, A.: KeYmaera X: An axiomatic
tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.)
25th Intl. Conf. on Automated Deduction (CADE), Berlin, Germany. pp. 527-538.
No. 9195 in LNCS, Springer (2015)

Grahl, D., Bubel, R., Mostowski, W., Schmitt, P.H., Ulbrich, M., Weif, B.: Modular
specification and verification. In: Ahrendt et al. [4], chap. 9, pp. 289-351. https:
//doi.org/10.1007/978-3-319-49812-6 9

Grahl, D., Ulbrich, M.: From specification to proof obligations. In: Ahrendt et al.
[4], chap. 8, pp. 243-287. https://doi.org/10.1007,/978-3-319-49812-6 8

H&hnle, R., Huisman, M.: Deductive verification: From pen-and-paper proofs to
industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Sci-
ence: State of the Art and Perspectives, pp. 345-373. No. 10000 in LNCS, Springer,
Cham, Switzerland (2019)

Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing, MIT
Press (Oct 2000)

Hentschel, M., Bubel, R., Hihnle, R.: Symbolic execution debugger (SED). In:
Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification, 14th International
Conference, RV, Toronto, Canada. pp. 255-262. No. 8734 in LNCS, Springer (2014)
Hentschel, M., Bubel, R., Hahnle, R.: The Symbolic Execution Debugger (SED):
A Platform for Interactive Symbolic Execution, Debugging, Verification and More.
STTT 21(5), 485-513 (Oct 2018)

Hiep, H.A., Maathuis, O., Bian, J., Boer, F.S.D., van Eekelen, M.C.J.D., Gouw,
S.D.: Verifying OpenJDK'’s LinkedList using KeY. In: Biere, A., Parker, D. (eds.)

https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.5381/JOT.2005.4.8.A1
https://doi.org/10.5381/JOT.2005.4.8.A1
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_8
https://doi.org/10.1007/978-3-319-49812-6_8

26

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

B. Beckert et al.

Tools and Algorithms for the Construction and Analysis of Systems, 26th Intl.
Conf. TACAS, Dublin, Ireland, Part II. pp. 217-234. No. 12079 in LNCS, Springer,
Cham (2020)

Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. of the ACM
12(10), 576-580, 583 (Oct 1969)

Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-
520, Department of Computer Science, Katholieke Universiteit Leuven (Aug 2008),
http: //www.cs.kuleuven.be/ ~bartj/verifast /verifast.pdf

Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. pp.
268-283. Springer, Berlin, Heidelberg (2006)

Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267288
(2011). jhttps://doi.org/10.1007/S00165-010-0152-5

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: a
software analysis perspective. Formal Aspects of Computing 27(3), 573-609 (2015)
Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Miiller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual
(May 2013), http://www.eecs.ucf.edu/ leavens/JML//OldReleases/jmlrefman.
pdf}, draft revision 2344

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning, 16th International Conference, Dakar, Senegal, Revised Selected
Papers. pp. 348-370. No. 6355 in LNCS, Springer (2010)

Leino, K.R.M., Wiistholz, V.: The Dafny integrated development environment. In:
F-IDE 2014. pp. 3-15. No. 149 in EPTCS (2014)

Lidstrom, C., Gurov, D.: An abstract contract theory for programs with proce-
dures. In: Guerra, E., Stoelinga, M. (eds.) Fundamental Approaches to Software
Engineering, 24th Intl. Conf. FASE, Luxembourg City, Luxembourg. pp. 152-171.
No. 12649 in LNCS, Springer (2021). https://doi.org/10.1007/978-3-030-71500-7
3

McCarthy, J.: Towards a mathematical science of computation. In: 2nd IFIP
Congress. pp. 21-28. North-Holland (1962)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. No. 2283 in LNCS, Springer-Verlag (2002)

Platzer, A., Quesel, J.D.: KeYmaera: A Hybrid Theorem Prover for Hybrid
Systems (System Description). In: Armando, A., Baumgartner, P., Dowek, G.
(eds.) Automated Reasoning. pp. 171-178. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007,/978-3-540-71070-7 15

Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual
Symp. on Foundations of Computer Science, Houston, TX, USA. pp. 109-121.
IEEE Computer Society, Los Alamitos, CA (1976). https://doi.org/10.1109 /SFCS.
1976.27

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Symposium on Logic in Computer Science (LICS) 2002. pp. 55-74. IEEE Computer
Society (2002). https://doi.org/10.1109/LICS.2002.1029817

Rimmer, P., Ulbrich, M.: Proof search with taclets. In: Ahrendt et al. [4], chap. 4,
pp. 107-147. https://doi.org/10.1007/978-3-319-49812-6 4

Runge, T., Schaefer, 1., Cleophas, L., Thiim, T., Kourie, D.G., Watson, B.W.: Tool
support for correctness-by-construction. In: Hahnle, R., van der Aalst, W.M.P.
(eds.) Fundamental Approaches to Software Engineering, 22nd Intl. Conf. FASE,
Prague, Czech Republic. pp. 25-42. No. 11424 in LNCS, Springer (2019)

http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
https://doi.org/10.1007/S00165-010-0152-5
https://doi.org/10.1007/S00165-010-0152-5
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-319-49812-6_4
https://doi.org/10.1007/978-3-319-49812-6_4

57.

58.

59.

60.

61.

62.

The Java Verification Tool KeY: A Tutorial (preprint) 27

Schmitt, P.H.: First-order logic. In: Ahrendt et al. [4], chap. 2, pp. 23-47. https:
//doi.org/10.1007/978-3-319-49812-6 2

Schmitt, P.H., Ulbrich, M., Weif, B.: Dynamic frames in Java Dynamic Logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010, Paris. pp. 138-152. No. 6528 in
LNCS, Springer (2010). https://doi.org/10.1007/978-3-642-18070-5 10
Steinhéfel, D.: REFINITY to model and prove program transformation rules. In:
d. S. Oliveira, B.C. (ed.) Programming Languages and Systems, 18th Asian Symp.,
APLAS, Fukuoka, Japan. LNCS, vol. 12470, pp. 311-319. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64437-6 16

Steinhofel, D., Héhnle, R.: Schematic Program Proofs with Abstract Execution:
Theory and Applications. Journal of Automated Reasoning 68(7) (2024)
Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: Auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems — 21st Interna-
tional Conference, TACAS, London, UK. pp. 566—-580. No. 9035 in LNCS, Springer
(2015)

Tuerk, T.: Local reasoning about while-loops. In: VSTTE Theory Workshop (VS-
Theory) (May 2012)

https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-642-18070-5_10
https://doi.org/10.1007/978-3-642-18070-5_10
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16

	The Java Verification Tool KeY: A Tutorial (preprint)

