
The Java Verification Tool KeY
An FM 2024 Tutorial

Bernhard Beckert Richard Bubel Daniel Drodt
Reiner Hähnle Florian Lanzinger Wolfram Pfeifer
Mattias Ulbrich Alexander Weigl
Karlsruhe Institute of Technology
Technical University of Darmstadt

May 9, 2025



Outline

Introduction to Specification and Verification of Java Programs
Demo I
Java Features: Heap, Exceptions, Loops, Integer Types

∞

Handling Framing with KeY
Demo II
Taclets (Extending KeY)
Hands-On Exercise

KeY Tutorial FM’24 1 / 94



Part I

Introduction
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What is KeY?

a static verification
and

research tool

a project
founded 1999

a verification
tool

a research
platform

a verification
approach
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Tutorial Objectives

After this tutorial you know the basic concepts of
formal specification of object-oriented programs
▶ functional behavior
▶ method contracts
▶ framing of memory access

the design of a deductive verification system based on
▶ a logic calculus and
▶ symbolic execution

After this tutorial you are able to
write a formal specification in the Java Modeling Language (JML)
verify that a Java program satisfies its JML specification using the KeY tool
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Deductive Verification

Java Code Formal
specification

correct ✓

Program Verification System

Proof rules establish relation “implementation conforms to specification”

Computer support essential for verification of real programming languages
boolean ArrayList:contains(Object o)

Typical small Java library method implementation
Behavioral Proof ▶ ca. 1,750 proof steps, ca. 0.6 secs with KeY

▶ 15 case distinctions, fully automatic
Framing ▶ ca. 6,700 proof steps, ca. 2.4 secs with KeY

▶ 50 case distinctions, fully automatic
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One Main Use Case of KeY

Verification of JDK Library Source Code Implementations

Fully Verified Java Card API Reference Implementation (2007)
OpenJDK’s Sort Method for Generic Collections (2015) Buggy!

JDK’s Dual Pivot Quicksort (2017)
JDK’s Identity Hash Map (2022) Buggy!

OpenJDK’s LinkedList (2022) Buggy!

OpenJDK’s BitSet (2023) Buggy!

State-of-art sorter ips4o (2024)
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Part II

Verification Approach
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Specification and Verification Workflow

+
Proof Obligation

Generator

pre → ⟨p⟩post

×? ✓
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Specification and Verification Target

In Object-Oriented Setting:
Units to be specified are interfaces, classes, and their methods

Focus on methods

Method specifications must include the following aspects:

Initial value of formal parameters
Expected result value and any changes to field values
Accessible part of pre-/post-state

In this tutorial we focus on sequential Java programs
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Specifications as Contracts

Useful analogy to stress the different roles/obligations/responsibilities:
Method specification as a contract
(between method implementor/callee and user/caller)

“Design by Contract” methodology (Meyer, 1992, Eiffel)

Callee guarantees certain outcome provided caller guarantees prerequisites
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Contracts and Verification

Contract describes effect of a method execution in terms of logical formulas

Advantages of Contracts

Correctness proof follows call graph, is procedure modular
Instead of inlining method implementation, apply contract
Replace program execution by substitution and deduction
Avoid state explosion due to non-linear call structure
Handle unbounded recursion

First used in (Hoare, 1971, LNM 188, pp. 102–116)
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Method Contract: Definition

Let m be a method; a contract for m has the form:
Contract(m) := (pre,post[,mod] [,acc] [, trm])

Formulas pre and post are called pre- and postcondition
Optional modifiers mod and acc are sets of memory locations
Optional termination witness trm is a term equipped with a well-order ≺

Meaning of a Contract (for Total Correctness)
If the caller of m ensures that pre holds at call time, method m guarantees:

1. post holds in the reached final state;
2. at most locations in mod where modified (default: all visible);
3. the result of m only depends on locations in acc (default: all visible);
4. m terminates: trm stays non-negative and strictly decreases at recursive calls
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Part III

Specification with JML

KeY Tutorial FM’24 13 / 94



Java Modeling Language (JML)

JML is a specification language tailored to Java,
a behavioral interface specification language (BISL)

General JML Philosophy
Integrate

specification and
implementation

in one single language (“single-tier approach”)

⇒ JML is not external to Java, but an extension of Java

JML
is

Java + First-Order Logic + Contracts + Invariants + more . . .
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Running Example

private int binSearch(int[] a, int v, int low, int up) {
if ( low < up) {

int mid = low + (( up − low) / 2);
if ( v == a[mid]) { return mid; }
else if ( v < a[mid]) { return binSearch(a, v, low, mid); }
else { return binSearch(a, v, mid + 1, up); }

}
return −1;

}

Observations
Internal method for binary search in contiguous part [low, up) of array a
(for search in complete array call binSearch(a, v) = binSearch(a, v, 0, a.length))
Recursive implementation
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Specifying Binary Search in JML

Natural Language Specification
If the caller guarantees that
(i) low is less-or-equal than up, both
are in the bounds of a (incl. a.length),
(ii) a is not null and (iii) a is sorted,
then the method guarantees that
(iv) the result is -1 or in [low, up)
(v) if v is in a then an index of v in

a is returned, else -1 is returned
(vi) it terminates w/o an exception
(vii) the heap is not modified, and
(viii) up − low is a termination witness

/*@ private normal_behavior
@ requires 0 <= low <= up <= a.length;
@ requires (\forall int x, y;
@ 0 <= x < y < a.length; a[x] <= a[y]);
@ ensures \result == −1 || low <= \result < up;
@ ensures (\exists int idx;
@ low <= idx < up; a[idx] == v) ?
@ \result >= low && a[\result] == v
@ : \result == −1;
@ assignable \nothing;
@ measured_by up − low;
@*/

private int binSearch(int[] a, int v, int low, int up)

Default in JML
Implicit precondition:

requires a!=null;
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Part IV

Deductive Verification
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Modelling Dynamic State Change

Only static properties expressible in (typed) first-order logic (FOL), for example:

Value of a field is in a certain range at a given time in a computation

Talks about a single program state

Required:
Express behavior of a program in terms of state changes, for example:

If method setAge(int newAge) is called on an object o of type Person
and the method argument newAge is positive

then afterwards o’s field age has the same value as newAge
and all other fields are unchanged
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Requirements

Requirements on a logic to reason about programs

Can relate different program states, i.e., before and after execution,
within a single formula
First-order (quantified) variables evaluated in same state to help automation
⇒ Program variables represented by constant symbols
whose value depends on interpretation in a given program state

First-order dynamic Logic is a program logic that meets these requirements
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Dynamic Logic (Pratt, 1976), (Harel, Meyer & Pratt, 1977)

KIV Dynamic Logic (Heisel, Reif & Stephan, 1987), Java Dynamic Logic (Beckert, 2000)

First-Order Logic (FOL) with Java type hierarchy
+ Java programs p
+ behavioral modalities ⟨p⟩ϕ, [p]ϕ (p program, ϕ DL formula)
+ symbolic state updates v := e

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?
If program variable i is greater than 5 in current state, then after executing the Java
statement “i = i + 10;”, i is greater than 15 (unprovable in Java)

Program variable i evaluated in differing state outside and under modality
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Program Variables

Dynamic Logic = Typed FOL + . . .

i > 5 → [i = i + 10;]i > 15

Program variable i evaluated in different states before / after execution

Consequences
Program variables cannot be first-order variables
▶ Quantified FO variable has value fixed by variable assignment

Program variables such as i are state-dependent constant symbols
Value of state-dependent symbol can be changed by a program

Three words one meaning: state-dependent, non-rigid, flexible
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Programs in Dynamic Logic

Dynamic Logic = Typed FOL + programs + . . .
Programs here: any legal sequence of Java statements
(can be incomplete, no need for surrounding method or class or return)

Example
Program variables: int r, i, n;
Then a permitted program fragment appearing in a DL formula is:

i = 0;
r = 0;
while (i<n) {

i = i+1;
r = r+i;

}
r = r+r−n;
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Relating Program States: Modalities

Dynamic Logic extends FOL with two additional (mix-fix) operators:

⟨p⟩ϕ “diamond” [p]ϕ “box”

where p is a program, ϕ again DL formula
ϕ is in scope of p, can see its program variables
Intuitive Meaning

⟨p⟩ϕ: p terminates and formula ϕ holds in final state — (total correctness)
[p]ϕ: If p terminates then formula ϕ holds in final state — (partial correctness)

Sequential Java programs are deterministic:
If a Java program terminates normally

then exactly one final state is reached from a given initial state
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Dynamic Logic: Examples

Let i, old_i denote program variables of type int
Give the meaning in natural language:

1. i .
= old_i → ⟨i++;⟩i > old_i

“If i++; is executed in a state where i and old_i have the same value, then the
program terminates and in its final state the value of i is greater than the value
of old_i” (not provable, final state not precise)

2. i .
= 0 → [while (true) {i++;}]i .

= 42
“If the program is executed in a state where i is equal to 0 and if the program
terminates then in its final state the value of i is equal to 42” (provable)
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Dynamic Logic Formulas

Definition (Dynamic Logic (DL) Formulas, inductive definition)

Each first-order logic (FOL) formula is a DL formula

If p is a program and ϕ a DL formula then
{
⟨p⟩ϕ
[p]ϕ

}
is a DL formula

DL formulas are closed under FOL quantifiers and connectives

Recap

Program variables are flexible constants: never bound in quantifiers
Java Programs contain no FOL variables
Modal DL formulas can appear nested inside each other
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Tracing Concrete Program Execution

1 a = a − b;
2 if (a < 0) {
3 a = −a;
4 }
5 r = b / a;

1

2

3

5

✓

Program counter
=̂

Line number executed next

PV Value

a 3
b 5
r 0
PV Value

a −2
b 5
r 0

PV Value

a 2
b 5
r 2
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Symbolic Program Execution

1 a = a − b;
2 if (a < 0) {
3 a = −a;
4 }
5 r = b / a;

1

2

3

5

✓

✓

×

5

✓ ×

PV Value

a a0
b b0
r r0

Constraint
true

Symbolic value

Path condition on
program variables

PV Value

a a0 − b0

b b0
r r0

Constraint
true

PV Value

a a0 − b0
b b0
r r0

Constraint
a0 − b0 < 0

PV Value

a a0 − b0
b b0
r r0

Constraint
a0 − b0 ≥ 0

PV Value

a −a0 + b0
b b0
r r0

Constraint
−a0 + b0 < 0

PV Value

a −a0 + b0
b b0
r b0/(−a0 + b0)

Constraint
−a0 + b0 < 0

PV Value

a −a0 + b0
b b0
r r0

PV Value

a a0 − b0
b b0
r b0/(a0 − b0)

Constraint
a0 − b0 > 0

PV Value

a a0 − b0
b b0
r r0

Constraint
a0 − b0 = 0
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Proving Validity of Dynamic Logic (DL) Formulas

Syntactic, rule-based formula transformation to realize symbolic execution in DL

A sequent
antecedent︷ ︸︸ ︷
ϕ1, . . . , ϕn =⇒

succedent︷ ︸︸ ︷
ψ1, . . . , ψm

has the same meaning as(
ϕ1 ∧ · · · ∧ ϕn

)
→

(
ψ1 ∨ · · · ∨ ψm

)
Schematic sequent rules describe transformation (read from bottom to top)

ruleName

premises︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γk =⇒ ∆k

Γ =⇒ ∆︸ ︷︷ ︸
conclusion

where Γ,∆, Γi,∆i match sets of DL formulas
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Symbolic Execution in a DL Sequent Calculus

Symbolic Execution of Conditional with Simple Guard

if
Γ,b .

= true =⇒ ⟨p; r⟩ϕ,∆ Γ,b .
= false =⇒ ⟨q; r⟩ϕ,∆

Γ =⇒ ⟨if (b) { p } else { q }; r⟩ϕ,∆

Calculus rules for symbolic execution work on first active statement
Symbolic execution must consider all possible execution branches

Symbolic Execution of Loops: Unwind

unwindLoop
Γ =⇒ ⟨if (b) { p; while (b) {p} }; r⟩ϕ,∆

Γ =⇒ ⟨while (b) {p}; r⟩ϕ,∆

KeY Tutorial FM’24 29 / 94



Symbolic Updates in Symbolic Execution

Need to model control flow and state changes

Requirements of Explicit Notation for Symbolic State Changes

Symbolic execution interprets program in forward direction: Avoid ghost variables
Simplify effects of state change eagerly
⇒ Succinct representation of state changes effected by incremental SE step
Apply state changes lazily (to post condition)

A dedicated notation for symbolic state changes: Symbolic updates
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Symbolic State Updates

Definition (Syntax of Updates, Updated Terms/Formulas)
Let v be a program variable of type T, e a term of type T,
e′ any term, ϕ any formula, then

v := e is an elementary update (of v to e)
{v := e}e′ is a DL term and {v := e}ϕ is a DL formula

Definition (Informal Semantics of Updates)
v := e modifies current state into a state, where v has value of e
(and all other program variables have same value as in current state)
{v := e}e′ is the value of e′ in the state, where all v’s in e′ have value of e
{v := e}ϕ is true, if ϕ is true in the state, where all v’s in ϕ have value of e

The formal semantics of updates is characterized by a set of rewrite rules
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Explicit State Updates: Observations

Facts about updates v := t

Update semantics almost identical to that of assignment statement
Updates are not assignments:
▶ right-hand side is a term or formula, not a program expression;
▶ ⟨x = i++;⟩ϕ cannot be turned into update (has side effect)

Updates are not equations: they change value of v
Application of updates is similar to lazy, explicit substitution

Purpose of updates is to represent the effect of assignments
in terms of simple, symbolic state changes
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Assignment Rule Formulated with Updates

Symbolic execution of assignment with updates

assign
Γ =⇒ {x := e}⟨p⟩ϕ,∆
Γ =⇒ ⟨x = e; p⟩ϕ,∆

Simple! No variable renaming, no ghost variables
Dedicated rules needed for x = e1 + e2, etc.
Works for scalar variable x and as long as e has no side effects
⇒ need to come back to these issues
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Update Composition

How to apply updates on updates?

Example
Symbolic execution of

x = x + y;
y = x − y;
x = x − y;

yields:
{x := x + y}{y := x - y}{x := x - y}

Need to compose three sequential state changes into a single one!
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Parallel Updates

Compose several elementary updates into one parallel update:

Definition (Parallel Update)
A parallel update is an expression of the form {v1 := r1 || · · · || vn := rn}

All ri computed in old state before update is applied
Updates of all program variables vi executed simultaneously
Upon conflict vi = vj, ri ̸= rj later update (max{i, j}) wins

Update composition achieved by rewrite rules such as:

{v1 := r1}{v2 := r2} ⇝ {v1 := r1 || v2 := {v1 := r1}r2}

KeY Tutorial FM’24 35 / 94



Parallel Updates: Example

Example

{x := x + 1}{y := 2 ∗ x} ⇝ {x := x + 1 ∥ y := 2 ∗ (x + 1)}
▶ Outer update also applied on right side of inner update
▶ Sequential application replaced by simultaneous application

{x := y ∥ y := x}
▶ Describes swap of values of program variables x, y
▶ Elementary updates within a parallel update independent of each other

{x := 5 ∥ x := y + 1} ⇝ {x := y + 1}
▶ Last variable assignment wins

Parallel updates store intermediate state of symbolic execution
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Relation of DL Calculus to Symbolic Execution

1 a = a − b;
2 if (a < 0) {
3 a = −a;
4 }
5 r = b / a;

1 PV Value

a a0
b b0
r r0

Constraint
true

true =⇒
{a := a0∥b := b0∥r := r0}

⟨a = a - b; if (a < 0) ...⟩post
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Relation of DL Calculus to Symbolic Execution

1 a = a − b;
2 if (a < 0) {
3 a = −a;
4 }
5 r = b / a;

1 PV Value

a a0
b b0
r r0

Constraint
pre

pre =⇒
{a := a0∥b := b0∥r := r0}

⟨a = a - b; if (a < 0) ...⟩post
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Handling Expressions with Side effects

Unfolding complex expressions (here on the left side)

Γ =⇒ ⟨Tnse v; v = nse; v[e] = e′; r⟩ϕ,∆
Γ =⇒ ⟨nse[e] = e′; r⟩ϕ,∆

Complex expressions may have side effects
Unfold complex expressions in Java evaluation order (left-to-right)

Consequence: guards can assumed to be simple and side effect-free:

if
Γ,b .

= true =⇒ ⟨p; r⟩ϕ,∆ Γ,b .
= false =⇒ ⟨q; r⟩ϕ,∆

Γ =⇒ ⟨if (b) { p } else { q }; r⟩ϕ,∆
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Statements that Change Control Flow

Array Assignment

Γ, a ̸ .= null, 0 ≤ e < a.length =⇒ {v := a[e]} ⟨r⟩ϕ,∆
Γ, a .

= null =⇒ ⟨throw new NullPointerException(); r⟩ϕ,∆
Γ, a ̸ .= null, 0 > e ∨ e ≥ a.length =⇒ ⟨throw new AIOB(); r⟩ϕ,∆

Γ =⇒ ⟨v = a[e]; r⟩ϕ,∆

Use symbolic array update v := a[e] with dedicated set of rewrite rules
All outcomes of array assignment must be considered
(AIOB = ArrayIndexOutOfBoundException)
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Method Invocation

?
Γ =⇒ ⟨v = m(se); r⟩ϕ,∆

Option 1: Inline body of method m

+ Follows symbolic execution
paradigm

+ Easy to implement

- Change to invoked method m
requires re-verification of all callers
breaks modularity

- Non-linear calls expensive &
unbound recursion impossible
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Method Contract Rule (Simplified)

Contract(m) := (pre,post[,mod] [,acc] [, trm])

Prerequisite: partial correctness, mod = ∅ (also no new objects)
(assumption can be removed, but beyond scope of tutorial; see later ’loop rule’)

Γ =⇒ {u} {arg := se}pre,∆
Γ =⇒ {u} {arg := se ∥ res := c}

(
post → {v := res} [r]ϕ

)
,∆

Γ =⇒ {u} [v = m(se); r]ϕ,∆
Program variables arg, res refer to method parameter, return value in pre,post
c is Skolem constant

Correctness of contract application depends on proven contract for m:
pre → [res = m(arg); ]post (where m inlined!)
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Part V

Demo: Binary Search (Recursive)
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Part VI

Towards Real Java
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No escape from reality

Rules and updates work fine for scalar values, but in the real world. . .

Java is object-oriented
▶ Inheritance
▶ Values on stack and heap
▶ Complex object creation
▶ . . .

Aliasing
Exceptions are thrown
Loops have unknown bounds
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Modelling Java in FOL
Fixing a Java-based Type Hierarchy

any

Heap Fieldbooleanint
Object

Java classes

Null

⊥

Each interface and class in API and in target program becomes type
with appropriate subtype relation
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Modeling the Heap in FOL

The Java Heap
Values of reference types (objects) live on the heap

Heap values dynamically change during symbolic execution
Each program state (model) relates objects to fields and values

The Java Heap Model of KeY
Data type Heap models content of heap in a given state (model)
Rigid functions model read and write access to fields in a given heap:
Write Heap store (Heap, Object, Field, any);

Modifies value of field of object to the value in the last argument
Read any select (Heap, Object, Field);

Selects value of field of object
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Modeling Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int p_age)
int getId()

For each Java reference type C there is a signature
type C ∈ TSym, for example, Person
For each Java field f there is a unique constant
f ∈ FSym of type Field, e.g., Person::$age
When obvious, write age instead of Person::$age
Domain of all Person objects: DPerson

Heap relates objects and fields to values (as seen)

Reading Fields (Simplified)
Signature FSym: any select (Heap, Object, Field);
Java expression p.age >= 0

Typed FOL select(heap,p,age) >= 0
heap is reserved program variable for “current” heap
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Modeling Fields in FOL
The Full Story

Reading Fields
Signature FSym: any select (Heap, Object, Field);
select(heap, p, age) >= 0 well-formed?

Return type is “any”—need to cast to int
There can be many fields with name age

Use function int::select(heap, p, Person::$age)
(int::select has same meaning as (int)select)

Writing to Fields
Signature FSym: Heap store (Heap, Object, Field, any);
Use function store(heap, p, Person::$age, 42)
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Field Updates

The Global Program Variable heap
JavaDL has reserved program variable Heap heap

Heap stored in heap is used by Java program under verification
for read / write field access

Changing the value of fields
How to translate assignment to field, for example, p.age=17;?

Γ =⇒ {heap := store(heap,p,age,17)}⟨r⟩ϕ,∆
Γ =⇒ ⟨p.age = 17; r⟩ϕ,∆
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Reasoning about Heaps:
Symbolic Execution of Field Access

Reading a Field Value
Symbolic execution of accessing value of field f of object o with type T in heap h :
Rewrite rule performs lookup in h using pair (o, f ) as key / index
selectOfStore

selectT(store(h,u,g, v),o, f )⇝
if (u .

= o ∧ g .
= f ∧ ¬(g .

= java.lang.Object.<created>))
then (v) else (selectT(h,o, f ))

where
h is a schema variable matching terms of type Heap
u,o and v are schema variables matching terms of type Any
f ,g are schema variables matching terms of type Field

selectOfStore never changes value of field <created> used for object creation
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Symbolic Execution of Field Access:
Example

Example
f, g are fields of type int declared in class C; o, u program variables of type C

int::select(store(heap,o,f,15),o,f)⇝ 15
int::select(store(heap,o,f,15),o,g)⇝ int::select(heap,o,g)
int::select(store(heap,o,f,15),u,f)⇝
if ((o .

= u) ∧ f .
= f ∧ ¬(f .

= <created>)) then (15) else (int::select(heap,u,f))
⇝ if (o .

= u) then (15) else (int::select(heap,u,f))

Pretty Printing
T :: select(heap,o,f) is shown as o.f
select(store(heap,o,f,17),u,f) is shown as u.f@heap[o.f := 17]
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Symbolic Execution of Field Access:
Example

Example
f, g are fields of type int declared in class C; o, u program variables of type C

int::select(store(heap,o,f,15),o,f)⇝ 15
int::select(store(heap,o,f,15),o,g)⇝ int::select(heap,o,g)
int::select(store(heap,o,f,15),u,f)⇝
if ((o .

= u) ∧ f .
= f ∧ ¬(f .

= <created>)) then (15) else (int::select(heap,u,f))
⇝ if (o .

= u) then (15) else (int::select(heap,u,f))

Pretty Printing
T :: select(heap,o,f) is shown as o.f
select(store(heap,o,f,17),u,f) is shown as u.f@heap[o.f := 17]

In the following we often use the pretty-printed version and omit the T :: prefix
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Heap Anonymization

Recall method contract rule:
Γ =⇒ {u} {arg := se}pre,∆
Γ =⇒ {u} {arg := se || res := c}

(
post → {v := res} [r]ϕ

)
,∆

Γ =⇒ {u} [v = m(se); r]ϕ,∆

Assumed mod = ∅. To weaken this restriction:
1. Introduce fresh constant of type Heap, e.g., heap′

2. Anonymize current heap with location set mod:

anon(heap,mod,heap′)

3. Reassign current heap in anonymizing update:

Vmod = {heap := anon(heap,mod,heap′)}
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Method Contract with Heap Anonymization

anon(h, locs,h′) coincides with h on all locations except those in locs. These have
the value in h′

With
Vmod = {heap := anon(heap,mod,heap′)}

we have

Γ =⇒ {u} {arg := se}pre,∆
Γ =⇒ {u} {Vmod ||arg := se || res := c}

(
post → {v := res} [r]ϕ

)
,∆

Γ =⇒ {u} [v = m(se); r]ϕ,∆

Still simplified. E.g., exceptions!
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Loop Invariants

Idea behind loop invariants

Formula inv whose validity is preserved by loop guard and body
If, inv was valid at start of loop, it still holds after arbitrarily many loop
iterations
If the loop terminates at all, then inv must hold afterwards
Like for contracts, anonymize heap after at least one iteration (Vmod)

Γ =⇒ {u} inv,∆ (Initially valid)
Γ =⇒ {u} {Vmod} ((inv ∧ b .

= TRUE) → [body](inv ∧ frame)),∆ (Preserved)
Γ =⇒ {u} {Vmod} ((inv ∧ b .

= FALSE) → [r]ϕ),∆ (Use case)
Γ =⇒ {u} [while (b) {body}; r]ϕ,∆
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Limits of Simple Invariants

Limitations
The basic loop invariant rule:

1. Does not work for abrupt termination (break, return, exception), and
2. Does not allow guards with side effects

But KeY can deal with these as well!
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Semantics of Abrupt Termination

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

⟨p⟩ϕ: p terminates normally and formula ϕ holds in final state
(total correctness)
[p]ϕ: if p terminates normally then formula ϕ holds in final state
(partial correctness)

Abrupt termination counts as non-termination! (More later)
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Null Pointers
Null Pointer Exceptions
There are no “exceptions” in FOL: I(f ) is a total function for f ∈ FSym
Need to model possibility that o .

= null when symbolically executing o.a
KeY branches over o ! = null upon each field access

JavaDL Assignment Rule for Fields

assignmentToField
Γ,¬(o .

= null) =⇒ {heap := store(heap,o, f , v)}⟨r⟩ϕ,∆
Γ, (o .

= null) =⇒ ⟨throw new NullPointerException(); r⟩ϕ,∆
Γ =⇒ ⟨o.f = v; r⟩ϕ,∆

o, v schema variables matching program variables
f schema variable matching fields
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Specifying Exceptional Behavior of Methods

exceptional_behavior specification case
Assume precondition (requires clause) P fulfilled

Requires method to throw exception when pre-state satisfies P
Keyword signals specifies post-state,
depending on type of thrown exception
Keyword signals_only specifies permitted type of thrown exception

JML specifications must separate normal and exceptional specification cases
by logically disjoint preconditions
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Real-world Integers

i ≥ 0 → ⟨i = i + 1⟩(i > 0)

Is this formula valid for the Java type int?

Obviously, not true in Java, for example, i == Integer.MAX_VALUE
But we can currently prove it!
Java integers on (+, −, /, %, . . .) do not have the same meaning as in Z
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Comparison of Different Integer Semantics

Semantics Sound Complete Remarks

Javamath no no Good automation;
Used for: teaching, prototyping proofs

JavajavaSemantics yes yes Renders proofs complex,
automation less powerful
Use when correctness depends on overflow

JavacheckedOverflow yes no Detects over-/underflow
Usually, automation as good as in Javamath
Use when no overflow must happen

“math” is called “arithmeticSemanticsIgnoringOF” in the actual KeY GUI
sound and complete: relative to Java semantics as described in JLS
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Part VII

Advanced Features for Object Orientation

KeY Tutorial FM’24 61 / 94



Object Orientation

What do we need to specify and verify complex (object-oriented) data structures?

Important Concepts

Data Abstraction: State of a data structure can be represented using
mathematical values.
Data Encapsulation: Allows local reasoning.
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Class/Object Invariants

How to encode properties about the valid states of the data structure?

1 class EvenIntArray {
2 int[] a; // fields are non_null in JML by default
3 //@ instance invariant (\forall int i; 0 <= i < a.length; a[i] % 2 == 0);
4 }

Invariant Semantics in KeY
Invariant of this has to hold before and after each method call on this
Invariant of this has to hold after termination of each constructor
Exception: methods/constructors annotated with helper
All other invariants need to be added explicitly: \invariant_for(o)
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Model Fields

Model fields are specification-only1 fields that
can have a specification-only type (\bigint, \seq, . . . )
are observers (heap dependent functions), cannot be updated explicitly
are computed from Java fields (i.e., do not add to the state space)
must not be inconsistent (e.g. represents x = x + 1;)

Example:
1 //@ model \bigint absVal;
2 //@ represents absVal = f*c + g; // c, f, g are "normal" Java fields

1no influence on the Java program, cannot be accessed in Java
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Model Methods

Model methods are a generalization of model fields that
consist of only a single return statement
can be recursive
can have contracts
are often used for custom predicates/functions or lemmas

Example:
1 /*@ model_behavior
2 @ ensures (\sum int i; 0 <= i < a.length; a[i]) == a.length * c;
3 @ model boolean isConst(int[] a, int c) {
4 @ return (\forall int i; 0 <= i < a.length; a[i] == c);
5 @ } @*/

KeY Tutorial FM’24 65 / 94



Ghost Fields/Variables

Ghost fields are specification-only fields that
are treated like normal Java fields during verification
are stored on the heap, accessed via select/store (i.e., add to the state space)
need to be updated explicitly (via JML set statement)
are usually coupled to the Java fields via object invariants

Example:
1 //@ ghost \bigint absVal;
2 //@ invariant absVal == c*f + g; // f, g are "normal" Java fields
3

4 // in the constructor/method when updating the Java fields:
5 //@ set absVal = c*f + g;

Besides fields, also local ghost variables can be used (e.g. for intermediate results).
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Model vs. Ghost

Model Fields/Methods

do not add to the state space (more “beautiful” concept)
provide an abstraction of the state
proofs tend to get difficult, often need more interaction

Ghost Fields
add to the state space
need explicit set statements
constructive nature often facilitates proofs
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ADTs in KeY

What type can do we use for the specification-only fields that hold the abstract
value of our data structure?

Algebraic Data Types (ADTs)

built-in: \seq (with functions seqGet, seqLength, seqUpdate, ...)
built-in: \map (with functions mapGet, mapUpdate, mapRemove, ...)
user-defined ADTs (in .key file)

1 \datatypes {
2 List = Nil | Cons(any head, List tail);
3 }

From this, some rules are generated (for manual application).
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Inheritance of Specifications

Inheritance is an important OO concept, so what about specifications?

Behavioral Subtyping/Liskov Substitution Principle
Objects of subtype behave as specified in the superclass, i.e., they can be used
wherever an object of the superclass is expected.

In KeY, behavioral subtyping is ensured:
Contracts of superclasses are conjoined to those of subclasses.
Object invariants are inherited.
Model and ghost fields are inherited.
Model methods are inherited and can be overwritten.
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The Framing Problem

Encapsulation: We want to reason locally/modularly!

1 class Client {
2 int x;
3 int y;
4

5

6 void m() {
7 y = 5;
8 resetX();
9 assert y == 5;

10 }

11 /*@ ensures x == 0;
12 @ assignable x;
13 @
14 @*/
15 void resetX() {
16

17 ...x = 0;
18 y = 42;
19 }
20 }

Does the assertion hold?
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The Frame Problem: Concrete Aliasing

1 class Client {
2 IntList x;
3 IntList y;
4

5 //@ requires x != y;
6 void m() {
7 y.add(5);
8 resetX();
9 assert y.contains(5);

10 }

11 /*@ ensures x.isEmpty();
12 @ assignable x;
13 @
14 @*/
15 void resetX() {
16

17 x = new IntList();
18

19 }
20 }

What about this assertion?
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The Frame Problem: Concrete Aliasing

1 class Client {
2 IntList x;
3 IntList y;
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5 //@ requires x != y;
6 void m() {
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9 assert y.contains(5);
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11 /*@ ensures x.isEmpty();
12 @ assignable x;
13 @
14 @*/
15 void resetX() {
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17 x = new IntList();
18
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The Frame Problem: Abstract Aliasing

1 class Client {
2 IntList x;
3 IntList y;
4
5 /*@ requires x != y;
6 @ requires \disjoint(x.footprint,
7 @ y.footprint); @*/
8 void m() {
9 y.add(5);

10 resetX();
11 assert y.contains(5);
12 }
13
14 //@ assignable x.footprint;
15 void resetX() {
16 x.setElementsToZero();
17 }
18 }

19 class IntList {
20 /*@ nullable @*/ Node first;
21
22 //@ ghost \locset footprint;
23 /*@ invariant footprint == (this.* ∪
24 first == null ? \empty
25 : first.footprint); @*/
26 ...
27 }

Dealing with abstract aliasing is very
challenging, especially for modular
reasoning!

What about this assertion?
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The Frame Problem: Abstract Aliasing

1 class Client {
2 IntList x;
3 IntList y;
4
5 /*@ requires x != y;
6 @ requires \disjoint(x.footprint,
7 @ y.footprint); @*/
8 void m() {
9 y.add(5);

10 resetX();
11 assert y.contains(5);
12 }
13
14 //@ assignable x.footprint;
15 void resetX() {
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17 }
18 }
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20 /*@ nullable @*/ Node first;
21
22 //@ ghost \locset footprint;
23 /*@ invariant footprint == (this.* ∪
24 first == null ? \empty
25 : first.footprint); @*/
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27 }

Dealing with abstract aliasing is very
challenging, especially for modular
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Dynamic Frames

Dynamic Frame
Heap region that belongs to a data structure (“memory footprint”).

Described via ghost/model field or model method (usually “footprint” or “fp”)
JML type \locset: set of (object, field) pairs
“Dynamic”: Can grow over time, e.g. when nodes are added to a list.

Other Approaches for the Framing Problem
Separation Logic, Ownership Types, Implicit Dynamic Frames, ...
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Further Framing Concepts

Read and Write Effects
assignable ls : Write effect.
accessible ls : Read effect (for non-void methods).

Important Syntax

assignable \nothing : Only creation of new objects allowed.
assignable \strictly_nothing : Nothing at all changed on the heap.
\fresh(ls) : All locations in ls not allocated in the prestate.
\new_elems_fresh(ls) : Only freshly allocated locations added to ls.
a[i..j] : Location set containing the array elements a[i] to a[j].
o.* : Location set containing all fields of o.
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Dependency Specification Example

1 class Client {
2 IntList x, y;
3

4 /*@ requires x != y;
5 @ requires \disjoint(x.footprint,
6 @ y.footprint); @*/
7 void m() {
8 assume y.get(0) == 5;
9 resetX();

10 assert y.get(0) == 5;
11 }
12

13 //@ assignable x.footprint;
14 void resetX() {
15 x.setElementsToZero();
16 }
17 }

18 class IntList {
19

20 //@ ghost \locset footprint;
21 //@ invariant footprint == ...
22

23 //@ accessible footprint;
24 int get(int idx) { ... }
25 }

We can deduce that the assertion
holds (with lines 13 and 23 and
disjointness of footprints)!
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Method Calls in Specifications

Methods that are pure (i.e., change nothing on the heap and terminate) are allowed
to be “called" in specifications.

1 interface IntList {
2 /*@ pure @*/ int get(int idx);
3

4 //@ ensures get(idx) == v;
5 void set(int idx, int v);
6 }

Note: Often, proofs are easier when abstraction and model/ghost fields are used
instead (avoids additional modalities)!
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Part VIII

Demo: ArrayList (with Ghost Fields)
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Part IX

Inside KeY’s core
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Taclets

Extensible JavaDL calculus with Taclets
Calculus rules not hard-coded, but written in taclet language
▶ Except for some very complex rules like contract/loop invariant application, etc.

Calculus can be extended with user-defined rules
Soundness of user-defined rules provable

KeY Tutorial FM’24 79 / 94



Adding a simple custom rule with Taclets

Implication to disjunction

a → b⇝ ¬a ∨ b

Taclet
1 \schemaVariables { \formula a, b; }
2 \rules { impToOr {
3 \find(a → b)
4 \replacewith(¬ a ∨ b)
5 \heuristics(simplify) };}
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Adding a simple custom rule with Taclets

Implication to disjunction

1 \schemaVariables { \formula a, b; }
2 \rules { impToOr {
3 \find(a → b)
4 \replacewith(¬ a ∨ b)
5 \heuristics(simplify) };}

Elements of taclets
Schema variables match against terms, formulas, or variables, according to their type
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Adding a simple custom rule with Taclets

Implication to disjunction

1 \schemaVariables { \formula a, b; }
2 \rules { impToOr {
3 \find(a → b)
4 \replacewith(¬ a ∨ b)
5 \heuristics(simplify) };}

Elements of taclets
find clause defines the focus formula to which the rule is applied

Match only against formulas on antecedent or succedent by \find(=⇒ formula)
or \find(formula =⇒)
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Adding a simple custom rule with Taclets

Implication to disjunction

1 \schemaVariables { \formula a, b; }
2 \rules { impToOr {
3 \find(a → b)
4 \replacewith(¬ a ∨ b)
5 \heuristics(simplify) };}

Elements of taclets
replace clause replaces the focus

Also add clause which adds a new formula: \add(=⇒ formula) or
\add(formula =⇒)
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Adding a simple custom rule with Taclets

Implication to disjunction

1 \schemaVariables { \formula a, b; }
2 \rules { impToOr {
3 \find(a → b)
4 \replacewith(¬ a ∨ b)
5 \heuristics(simplify) };}

Elements of taclets
heuristics clause adds the rule to the automatic proof search strategy
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More complex taclets

Taclet
1 null_can_always_be_stored_in_a_reference_type_array {
2 \find(arrayStoreValid(array, null))
3 \replacewith(true)
4 \assumes( =⇒ array = null)
5 \sameUpdateLevel
6 \varcond(\isReferenceArray(array))
7 \heuristics(simplify)
8 };

Elements of taclets
Assume clause for additional conditions
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More complex taclets

Taclet
1 null_can_always_be_stored_in_a_reference_type_array {
2 \find(arrayStoreValid(array, null))
3 \replacewith(true)
4 \assumes( =⇒ array = null)
5 \sameUpdateLevel
6 \varcond(\isReferenceArray(array))
7 \heuristics(simplify)
8 };

Elements of taclets
Taclet only applies if focus and assumption under same update
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More complex taclets

Taclet
1 null_can_always_be_stored_in_a_reference_type_array {
2 \find(arrayStoreValid(array, null))
3 \replacewith(true)
4 \assumes( =⇒ array = null)
5 \sameUpdateLevel
6 \varcond(\isReferenceArray(array))
7 \heuristics(simplify)
8 };

Elements of taclets
Variable conditions state side conditions not expressible as formulas
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Part X

Hands-On
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Goal

Goal: Get the hands dirty with KeY.
Roadmap

Setup
KeY

Selection
Sort

Linked
List

Exercise 1
Verification of Selection Sort

Same level as Binary Search
Algorithmic w/o Object-orientation

Exercise 2
Verification of Linked List

Same level as Array List
OO dealing with ghost
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Setup KeY

1

Download the Hands-On Kit
Download from
key-project.org/tutorial-fm-2024/handson.zip
Includes KeY, and the exercise files.
java -jar key-2.13.3-exe.jar
Test installation with built-in example: SumAndMax.

2 Editing
You can use any text editor you like.

3 Profit
A give-away for every KeY installation.

5 minutes
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Selection Sort: A reminder of the idea

5 2 4 1 3

first smallest

swap

first

smallest

first smallest

swap

first smallest

swap

1. Divide list into sorted and
unsorted sub-lists.

2. Search for the smallest element in
the unsorted sub-list.

3. Swap first element of unsorted
sub-list with smallest element.

4. Increase sorted sub-list.
5. Repeat from (2) until unsorted

sub-list is larger than 1 element.
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Selection Sort: Exercise I

1 Get into the SelectionSort.java
Start with specification and verification of swap(array,i,j).

2 Start with loop invariant
Specification and verification of min(array).

3 Proof sortedness of array
Find post-conditions and loop invariant to show:

a1 ≤ a2 ≤ . . . ≤ an−1 ≤ an
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Selection Sort: Exercise II

4
Permutation
Permutation is part of KeY theories:

\dl_array2seq(a) – translates Java array a into a Seq (KeY sort)
\dl_seqPerm(a, \old(a)) – a is a permutation of \old(a)
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Selection Sort

Roadmap for specification & verification:
1. swap(a, i, j)
2. min(a, start)
3. sort(a) – sortedness ai ≤ ai+1
4. sort(a) – permutation \dl_seqPerm(a, \old(a))

25 minutes
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Selection Sort: The Solution
1 public class SelectionSort {
2 /*@ public normal_behaviour
3 ensures ( \foral l int i ; 0 <= i && i < a . length − 1 ; a [ i ] <= a[ i + 1 ] ) ;
4 ensures \dl_seqPerm( \dl_array2seq (a ) , \old ( \dl_array2seq (a ) ) ) ;
5 assignable a [ * ] ;
6 @*/
7 public void sort ( int [ ] a ) {
8 /*@
9 loop_invariant 0 <= i <= a . length ;

10 loop_invariant ( \foral l int j ; 0 <= j && j < i ; ( \ foral l int k ; j < k && k < a . length ; a [ j ] <= a[ k ] ) ) ;
11 loop_invariant \dl_seqPerm( \dl_array2seq (a ) , \old ( \dl_array2seq (a ) ) ) ;
12 decreases a . length − i ;
13 assignable a [ * ] ;
14 @*/
15 for ( int i = 0; i < a . length ; i ++) { int m = min(a , i ) ; swap(a ,m, i ) ; }
16 }
17 /*@ public normal_behaviour
18 requires 0 <= i < a . length && 0 <= j < a . length ;
19 ensures \old (a[ i ] ) == a[ j ] && \old (a[ j ] ) == a[ i ] ;
20 ensures \dl_seqPerm( \dl_array2seq (a ) , \old ( \dl_array2seq (a ) ) ) ;
21 assignable a[ i ] , a [ j ] ;
22 @*/
23 public void swap( int [ ] a , int i , int j ) { int temp = a[ i ] ; a [ i ] = a [ j ] ; a [ j ] = temp; }
24 /*@ public normal_behaviour
25 requires 0 <= start && start < a . length ;
26 ensures ( \foral l int i ; start <= i && i < a . length ; a [ \result ] <= a[ i ] ) ;
27 ensures start <= \result < a . length ;
28 assignable \strictly_nothing ;
29 @*/
30 public int min( int [ ] a , int start ) {
31 int res = start ;
32 /*@
33 loop_invariant start <= i <= a . length && start <= res < a . length ;
34 loop_invariant ( \foral l int j ; start <= j && j < i ; a [ res ] <= a[ j ] ) ;
35 decreases a . length − i ;
36 assignable \strictly_nothing ;
37 @*/
38 for ( int i = start ; i < a . length ; i ++) { i f (a [ i ] < a[ res ] ) { res = i ; } }
39 return res ; } }
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Linked List: Introduction

List
footprint : \locset
seq : \seq

get(int) : int
size() : int
add(int) : int
find(int) : int

LinkedList
- nodeseq : \seq
-first : Node
-last : Node
-size : int

ArrayList
-size : int
-array : int[]
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Linked List: Excercise

1 Load
Try to inspect the proof obligation for LinkedList class.

2
Find the invariant to couple \nodeseq with

first, last – the last and first node
size – number of values
seq – the sequence of values to the sequence of nodes
footprint – the heap location of your LinkedLists
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Linked List: Solution

1 /*@ private invariant first == (size == 0 ? null : (Node)nodeseq[0]);
2 @ private invariant last == (size == 0 ? null : (Node)nodeseq[size-1]);
3 @
4 @ private invariant size == seq.length && size == nodeseq.length;
5 @
6 @ private invariant (\forall int i; 0<=i && i<size;
7 @ ((Node)nodeseq[i]) != null
8 @ && ((Node)nodeseq[i]).data == (\bigint)seq[i]
9 @ && (\forall int j; 0<=j && j<size;

10 @ (Node)nodeseq[i] == (Node)nodeseq[j] ==> i == j)
11 @ && ((Node)nodeseq[i]).next == (i==size-1 ? null : (Node)nodeseq[i+1]));
12 @
13 @ private invariant footprint == \set_union(this.*,
14 @ (\infinite_union int i; 0<=i && i<size; ((Node)nodeseq[i]).*));
15 @*/

KeY Tutorial FM’24 93 / 94



Closing

Down the rabbit hole ...

key-project.org/thebook2
key-project.org/tutorial-fm-2024

KeYProject/key
support@key-project.org

Case Studies
ips4o
(TACAS’24)
IdentityHashMap
(iFM’22)
DualPivotQuickSort
(VSTTE’17)
TimSort (CAV’15)

KeY is a tool, library, and a platform for/of your research.
Thank you for joining the tutorial!

Have a lot of fun at FM 2024!
KeY Tutorial FM’24 94 / 94


	whiteIntroduction
	whiteVerification Approach
	whiteSpecification with JML
	whiteDeductive Verification
	whiteDemo: Binary Search (Recursive)
	whiteTowards Real Java
	whiteAdvanced Features for Object Orientation
	whiteDemo: ArrayList (with Ghost Fields)
	whiteInside KeY's core
	whiteHands-On

