
key-project.org

KeY-JML Cheat Sheet
- EXPRESSIONS -

Operators
JML extends the Java operators: + - * / % <= <
> >= <: <:= == != ˜ & ˆ & | && || ==> <== <==>
<=!=> ?: << >> JML expressions must be side-
effect free! New: a <: b (subtyping), a ==> b
(implication), and a <==> b (equivalence).
Arithmetic Semantics
RED: Please write 3-4 lines about the current
handling of arithmetic \bigint vs. code_math
and spec_math

Functions
• \dl_name(e)— direct access to JavaDL

functions
• \invariant_for(o) — class invariant of o
• \old(x)— value of x in the state before the

current block
• \pre(x)— value of x in the state before the

current method
• \fresh(x)— holds iff x was not allocated in

the current method’s prestate
Location Sets (Type: \locset)
Type \locset describes positions as Object ×
Field pairs on the heap. Useable in assignable

clauses and ghost variables.
• \locset(o.f, a[l..u], b[*])— the set

consisting of (o, f) and all entries in a be-
tween l and u (exclusive).

• \intersect(x,y) — x ∩ y
• \set_union(x,y) — x ∪ y
• \set_minus(x,y) — x \ y

Sequence (Type: \seq)
Mathematical data type of finite sequences.
• \seq_empty — empty sequence
• \seq_concat(a, b) — concatenation
• (T)s[i] — element access with cast to type

T
• s.length — length of the sequence
• \seq(e1,...,en) — seq. constructor
• s[i.. j] — subsequence
• \seq_def \bigint x; i; j; t— binder

form
Binders

Syntax: (Q T v ; guard ; value)

Quantifiers:
\forall — ∀v : T. guard(v) → value(v)
\exists — ∃v : T. guard(v) ∧ value(v)
\sum — ∑v:T∧guard(v) value(v)
\product — ∏v:T∧guard(v) value(v)
\num_of — ∑v:T∧guard(v) 1 Number of valid entries.

- CONSTRUCTS -
Modifiers
• ghost— declaration of spec-only fields

assigned by set statements (see JML
Statements)

• model— declaration of model fields and
methods; these have no state of their
own, but are coupled to a state by via a
represents

• nullable— declaration of a type as nul-
lable (the default being non-null)

• helper — helper methods neither require nor
ensure the invariant

• pure— pure methods modify no existing ob-
jects

Class-level

• invariant— object invariant adhered to
in every method’s initial and terminal state,
except helper methods

• represents — model field definition

Contracts
behavior = (normal_behavior +
exceptional_behavior) defines the allowed
clauses:
• requires — precondition
• ensures— postcondition; access return

value using \result
• assignable — frame condition
• measured_by — termination witness
• signals— abnormal postcondition; access

exception using \exception
• signals_only — allowed exceptions
Loop Invariants
Appear in JML comments before loops and
have the following clauses:
• loop_invariant— inductive invariant for-

mula
• assignable— frame condition (for whole

loop, not single iteration)
• decreases— strong monotonic decreasing

expression as a witness for termination
JML statements

• //@ assert e; or //@ assume e;
adds a proof goal or assumption on compu-
tation path.

• //@ set v = e;
assignment to a ghost variable

JML explained on Binary Search
/*@ private normal_behavior
@ requires (\exists int idx;
@ 0 <= idx < a.length;
@ a[idx] == v);
@ requires (\forall int x, y;
@ 0 <= x < y < a.length; a[x] <= a[y]);
@ ensures 0 <= \result < a.length
@ && a[\result] == v;
@ assignable \nothing;
@ also private exceptional_behavior
@ requires ! (\exists int idx;
@ 0 <= idx < a.length; a[idx] == v);
@ assignable \nothing;
@ signals_only NoSuchElementException;
@*/

private int binSearch(int[] a, int v) {
int low = 0;
int up = a.length;

/*@ loop_invariant 0 <= low <= up <= a.length
@ && (\forall int x; 0 <= x < low; a[x] != v);
@ && (\forall int x; up <= x < a.length; a[x] != v);
@ assignable \nothing;
@ decreases up - low;
@*/

while (low < up) {
int mid = low + ((up - low) / 2);
if (v == a[mid]) { return mid; }
else if (v < a[mid]) { up = mid; }
else { low = mid + 1; }

}
throw new NoSuchElementException();

}

Contracts have an optional visibility
modifier and behavior

Support for multi-way comparison.

assignable specifies that no heap lo-
cations are modified (\nothing).

loop_invariant defines an
inductive formula that holds
in every iteration.

Reached with assume low ≥ up and
invariant

requires introduces a pre-
condition.

ensures introduces a post-
condition.

also introduces a second contract.

signals_only lists the allowed ex-
ceptions.

Termination witness for loop:
0 ≤ (up − low) < \old(up − low)

Latest KeY Book

key-project.org/thebook2
support@key-project.org

https://key-project.org/thebook2

